These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33060178)

  • 41. Patterns of cortical input to the primary motor area in the marmoset monkey.
    Burman KJ; Bakola S; Richardson KE; Reser DH; Rosa MG
    J Comp Neurol; 2014 Mar; 522(4):811-43. PubMed ID: 23939531
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artifact-free recordings in human bidirectional brain-computer interfaces.
    Weiss JM; Flesher SN; Franklin R; Collinger JL; Gaunt RA
    J Neural Eng; 2019 Feb; 16(1):016002. PubMed ID: 30444217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mirror neurons are modulated by grip force and reward expectation in the sensorimotor cortices (S1, M1, PMd, PMv).
    Atique MMU; Francis JT
    Sci Rep; 2021 Aug; 11(1):15959. PubMed ID: 34354213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tuning curves for movement direction in the human visuomotor system.
    Fabbri S; Caramazza A; Lingnau A
    J Neurosci; 2010 Oct; 30(40):13488-98. PubMed ID: 20926674
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human.
    Wandelt SK; Kellis S; Bjånes DA; Pejsa K; Lee B; Liu C; Andersen RA
    Neuron; 2022 Jun; 110(11):1777-1787.e3. PubMed ID: 35364014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
    Crutcher MD; Russo GS; Ye S; Backus DA
    Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 50. Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey.
    Xiao J; Padoa-Schioppa C; Bizzi E
    Exp Brain Res; 2006 Jan; 168(1-2):106-19. PubMed ID: 16177830
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere.
    He SQ; Dum RP; Strick PL
    J Neurosci; 1993 Mar; 13(3):952-80. PubMed ID: 7680069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study.
    Menz VK; Schaffelhofer S; Scherberger H
    J Neural Eng; 2015 Oct; 12(5):056016. PubMed ID: 26355718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.
    Luu TP; Nakagome S; He Y; Contreras-Vidal JL
    Sci Rep; 2017 Aug; 7(1):8895. PubMed ID: 28827542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Place Cell-Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey Whole-Body Navigation.
    Yin A; Tseng PH; Rajangam S; Lebedev MA; Nicolelis MAL
    Sci Rep; 2018 Jun; 8(1):9184. PubMed ID: 29907789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey.
    Hendrix CM; Mason CR; Ebner TJ
    J Neurophysiol; 2009 Jul; 102(1):132-45. PubMed ID: 19403752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in motor cortical activity during visuomotor adaptation.
    Wise SP; Moody SL; Blomstrom KJ; Mitz AR
    Exp Brain Res; 1998 Aug; 121(3):285-99. PubMed ID: 9746135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp.
    Davare M; Rothwell JC; Lemon RN
    Curr Biol; 2010 Jan; 20(2):176-81. PubMed ID: 20096580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.