BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33060629)

  • 1. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms.
    Yamashita H; Sonobe R; Hirono Y; Morita A; Ikka T
    Sci Rep; 2020 Oct; 10(1):17360. PubMed ID: 33060629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging.
    Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z
    J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset.
    Van Wittenberghe S; Verrelst J; Rivera JP; Alonso L; Moreno J; Samson R
    J Photochem Photobiol B; 2014 May; 134():37-48. PubMed ID: 24792473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics.
    Wang YJ; Li TH; Jin G; Wei YM; Li LQ; Kalkhajeh YK; Ning JM; Zhang ZZ
    J Sci Food Agric; 2020 Jan; 100(1):161-167. PubMed ID: 31471904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Measurement of chlorophyll content and distribution in tea plant's leaf using hyperspectral imaging technique].
    Zhao JW; Wang KL; Ouyang Q; Chen QS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):512-5. PubMed ID: 21510416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging.
    Wang Y; Hu X; Hou Z; Ning J; Zhang Z
    J Sci Food Agric; 2018 Sep; 98(12):4659-4664. PubMed ID: 29607500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY; Shi JJ; Wang DC; Huang JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton.
    Read JJ; Tarpley L; McKinion JM; Reddy KR
    J Environ Qual; 2002; 31(5):1442-52. PubMed ID: 12371160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms.
    Sonobe R; Hirono Y; Oi A
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32192044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing carotenoid content in plant leaves with reflectance spectroscopy.
    Gitelson AA; Zur Y; Chivkunova OB; Merzlyak MN
    Photochem Photobiol; 2002 Mar; 75(3):272-81. PubMed ID: 11950093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra.
    Maccioni A; Agati G; Mazzinghi P
    J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing.
    Tang YL; Huang JF; Cai SH; Wang RC
    Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging.
    Wang YJ; Li LQ; Shen SS; Liu Y; Ning JM; Zhang ZZ
    J Sci Food Agric; 2020 Aug; 100(10):3803-3811. PubMed ID: 32201954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation.
    Sano T; Horie H; Matsunaga A; Hirono Y
    J Sci Food Agric; 2018 Dec; 98(15):5666-5676. PubMed ID: 29722013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of quality constituents in the young leaves of albino tea cultivars.
    Feng L; Gao MJ; Hou RY; Hu XY; Zhang L; Wan XC; Wei S
    Food Chem; 2014 Jul; 155():98-104. PubMed ID: 24594160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress].
    Chen B; Li SK; Wang KR; Wang FY; Xiao CH; Pan WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):421-5. PubMed ID: 20384137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.