These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33060662)

  • 41. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate.
    Yu W; Daniel J; Mehta D; Maddipati KR; Greenberg ML
    PLoS One; 2017; 12(8):e0182534. PubMed ID: 28817575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings.
    Chen IJ; Lo WS; Chuang JY; Cheuh CM; Fan YS; Lin LC; Wu SJ; Wang LC
    Plant Sci; 2013 Aug; 209():46-57. PubMed ID: 23759102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis.
    Zhang Z; Wang J; Zhang R; Huang R
    Plant J; 2012 Jul; 71(2):273-87. PubMed ID: 22417285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development.
    Chen H; Xiong L
    J Biol Chem; 2010 Jul; 285(31):24238-47. PubMed ID: 20516080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress.
    Joshi R; Ramanarao MV; Baisakh N
    Plant Physiol Biochem; 2013 Apr; 65():61-6. PubMed ID: 23416497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.
    Tatematsu K; Kumagai S; Muto H; Sato A; Watahiki MK; Harper RM; Liscum E; Yamamoto KT
    Plant Cell; 2004 Feb; 16(2):379-93. PubMed ID: 14729917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. sll1722, an unassigned open reading frame of Synechocystis PCC 6803, codes for L-myo-inositol 1-phosphate synthase.
    Chatterjee A; Majee M; Ghosh S; Majumder AL
    Planta; 2004 Apr; 218(6):989-98. PubMed ID: 14730448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Co-culturing experiments reveal the uptake of myo-inositol phosphate synthase (EC 5.5.1.4) in an inositol auxotroph of Saccharomyces cerevisiae.
    Steele E; Alebous HD; Vickers M; Harris ME; Johnson MD
    Microb Cell Fact; 2021 Jul; 20(1):138. PubMed ID: 34281557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol.
    Patra B; Ray S; Richter A; Majumder AL
    Protoplasma; 2010 Sep; 245(1-4):143-52. PubMed ID: 20524018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water Deficit Elicits a Transcriptional Response of Genes Governing d-pinitol Biosynthesis in Soybean (
    Dumschott K; Dechorgnat J; Merchant A
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096655
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Involvement of Arabidopsis BIG protein in cell death mediated by Myo-inositol homeostasis.
    Bruggeman Q; Piron-Prunier F; Tellier F; Faure JD; Latrasse D; Manza-Mianza D; Mazubert C; Citerne S; Boutet-Mercey S; Lugan R; Bergounioux C; Raynaud C; Benhamed M; Delarue M
    Sci Rep; 2020 Jul; 10(1):11268. PubMed ID: 32647331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis.
    Kumar KRR; Blomberg J; Björklund S
    Plant J; 2018 Nov; 96(3):578-594. PubMed ID: 30058106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Elongator complex regulates hypocotyl growth in darkness and during photomorphogenesis.
    Woloszynska M; Gagliardi O; Vandenbussche F; De Groeve S; Alonso Baez L; Neyt P; Le Gall S; Fung J; Mas P; Van Der Straeten D; Van Lijsebettens M
    J Cell Sci; 2018 Jan; 131(2):. PubMed ID: 28720596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content.
    Nunes AC; Vianna GR; Cuneo F; Amaya-Farfán J; de Capdeville G; Rech EL; Aragão FJ
    Planta; 2006 Jun; 224(1):125-32. PubMed ID: 16395584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular cloning and characterization of a cDNA encoding kiwifruit L-myo-inositol-1-phosphate synthase, a key gene of inositol formation.
    Cui M; Liang D; Ma F
    Mol Biol Rep; 2013 Jan; 40(1):697-705. PubMed ID: 23065229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress.
    Chen C; Sun X; Duanmu H; Yu Y; Liu A; Xiao J; Zhu Y
    PLoS One; 2015; 10(6):e0129998. PubMed ID: 26091094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.
    Huang X; Hernick M
    Protein J; 2015 Oct; 34(5):380-90. PubMed ID: 26420670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent.
    Vriezen WH; Achard P; Harberd NP; Van Der Straeten D
    Plant J; 2004 Feb; 37(4):505-16. PubMed ID: 14756759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Limiting etioplast gene expression induces apical hook twisting during skotomorphogenesis of Arabidopsis seedlings.
    Sajib SA; Grübler B; Oukacine C; Delannoy E; Courtois F; Mauve C; Lurin C; Gakière B; Pfannschmidt T; Merendino L
    Plant J; 2023 Apr; 114(2):293-309. PubMed ID: 36748183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.