BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33060722)

  • 1. A C-peptide complex with albumin and Zn
    Geiger M; Janes T; Keshavarz H; Summers S; Pinger C; Fletcher D; Zinn K; Tennakoon M; Karunarathne A; Spence D
    Sci Rep; 2020 Oct; 10(1):17493. PubMed ID: 33060722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device.
    Liu Y; Chen C; Summers S; Medawala W; Spence DM
    Integr Biol (Camb); 2015 May; 7(5):534-43. PubMed ID: 25825241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific Binding of Leptin to Red Blood Cells Delivers a Pancreatic Hormone and Stimulates ATP Release.
    Keshavarz H; Meints LM; Geiger MK; R Zinn K; Spence DM
    Mol Pharm; 2021 Jun; 18(6):2438-2447. PubMed ID: 33939443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adolescents with clinical type 1 diabetes display reduced red blood cell glucose transporter isoform 1 (GLUT1).
    Garg M; Thamotharan M; Becker DJ; Devaskar SU
    Pediatr Diabetes; 2014 Nov; 15(7):511-8. PubMed ID: 24552568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of GLUT1 inhibition by cytoplasmic ATP.
    Blodgett DM; De Zutter JK; Levine KB; Karim P; Carruthers A
    J Gen Physiol; 2007 Aug; 130(2):157-68. PubMed ID: 17635959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter.
    Meyer JA; Froelich JM; Reid GE; Karunarathne WK; Spence DM
    Diabetologia; 2008 Jan; 51(1):175-82. PubMed ID: 17965850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human placental GLUT1 glucose transporter expression and the fetal insulin-like growth factor axis in pregnancies complicated by diabetes.
    Borges MH; Pullockaran J; Catalano PM; Baumann MU; Zamudio S; Illsley NP
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2411-2419. PubMed ID: 31175930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic peptide corresponding to the GLUT4 C-terminal cytoplasmic domain causes insulin-like glucose transport stimulation and GLUT4 recruitment in rat adipocytes.
    Lee W; Jung CY
    J Biol Chem; 1997 Aug; 272(34):21427-31. PubMed ID: 9261158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular organization of insulin signaling and GLUT4 translocation.
    Watson RT; Pessin JE
    Recent Prog Horm Res; 2001; 56():175-93. PubMed ID: 11237212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of myocardial glucose transporters GLUT1 and GLUT4 in chronically anemic fetal lambs.
    Ralphe JC; Nau PN; Mascio CE; Segar JL; Scholz TD
    Pediatr Res; 2005 Oct; 58(4):713-8. PubMed ID: 16189198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis.
    Montel-Hagen A; Blanc L; Boyer-Clavel M; Jacquet C; Vidal M; Sitbon M; Taylor N
    Blood; 2008 Dec; 112(12):4729-38. PubMed ID: 18796630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport in L6 myoblasts overexpressing GLUT1 and GLUT4.
    Robinson R; Robinson LJ; James DE; Lawrence JC
    J Biol Chem; 1993 Oct; 268(29):22119-26. PubMed ID: 8408071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferon-β Decreases the Hypermetabolic State of Red Blood Cells from Patients with Multiple Sclerosis.
    Jacobs M; Geiger M; Summers S; Janes T; Boyea R; Zinn K; Aburashed R; Spence D
    ACS Chem Neurosci; 2022 Sep; 13(17):2658-2665. PubMed ID: 35946788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes.
    Livshits L; Caduff A; Talary MS; Lutz HU; Hayashi Y; Puzenko A; Shendrik A; Feldman Y
    J Phys Chem B; 2009 Feb; 113(7):2212-20. PubMed ID: 19166280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells.
    Schürmann A; Monden I; Joost HG; Keller K
    Biochim Biophys Acta; 1992 Jul; 1131(3):245-52. PubMed ID: 1627641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of insulin signaling into distinct GLUT4 translocation and activation steps.
    Funaki M; Randhawa P; Janmey PA
    Mol Cell Biol; 2004 Sep; 24(17):7567-77. PubMed ID: 15314166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation.
    Dallner OS; Chernogubova E; Brolinson KA; Bengtsson T
    Endocrinology; 2006 Dec; 147(12):5730-9. PubMed ID: 16959848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle.
    Marette A; Richardson JM; Ramlal T; Balon TW; Vranic M; Pessin JE; Klip A
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C443-52. PubMed ID: 1514590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.