These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33060733)

  • 1. Experimental and theoretical evidence of dihydrogen bonds in lithium amidoborane.
    Magos-Palasyuk E; Litwiniuk A; Palasyuk T
    Sci Rep; 2020 Oct; 10(1):17431. PubMed ID: 33060733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pressure-induced formation of dihydrogen bonds on lattice parameters, volume, and vibrational modes of ammonia borane.
    Nakano S; Fujihisa H; Yamawaki H; Kikegawa T
    J Chem Phys; 2022 Dec; 157(23):234702. PubMed ID: 36550056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-pressure study of lithium amidoborane using Raman spectroscopy and insight into dihydrogen bonding absence.
    Najiba S; Chen J
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19140-4. PubMed ID: 23115332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of Dihydrogen Bonds in High-Pressure Phases of Ammonia Borane by X-ray and Neutron Diffraction Measurements.
    Nakano S; Sano-Furukawa A; Hattori T; Machida S; Komatsu K; Fujihisa H; Yamawaki H; Gotoh Y; Kikegawa T
    Inorg Chem; 2021 Mar; 60(5):3065-3073. PubMed ID: 33587625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy study of ammonia borane at high pressure.
    Lin Y; Mao WL; Drozd V; Chen J; Daemen LL
    J Chem Phys; 2008 Dec; 129(23):234509. PubMed ID: 19102540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic investigation on the formation and dehydrogenation of calcium amidoborane ammoniate.
    Chua YS; Li W; Shaw WJ; Wu G; Autrey T; Xiong Z; Wong MW; Chen P
    ChemSusChem; 2012 May; 5(5):927-31. PubMed ID: 22290865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the interaction between HNZ (Z = O, S) and H(2)XNH(2) (X = B, Al). Conventional and dihydrogen bonds.
    Trung NT; Hue TT; Nguyen MT; Zeegers-Huyskens T
    Phys Chem Chem Phys; 2008 Sep; 10(33):5105-13. PubMed ID: 18701959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Dative and Dihydrogen Bonding in Ammonia Borane with Electronic Structure Computations and Raman under Nitrogen Spectroscopy.
    Dreux KM; McNamara LE; Kelly JT; Wright AM; Hammer NI; Tschumper GS
    J Phys Chem A; 2017 Aug; 121(31):5884-5893. PubMed ID: 28696687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-pressure Raman spectroscopic study of the ammonia-borane complex. Evidence for the dihydrogen bond.
    Trudel S; Gilson DF
    Inorg Chem; 2003 Apr; 42(8):2814-6. PubMed ID: 12691593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise phase transition in the formation of lithium amidoborane.
    Wu C; Wu G; Xiong Z; David WI; Ryan KR; Jones MO; Edwards PP; Chu H; Chen P
    Inorg Chem; 2010 May; 49(9):4319-23. PubMed ID: 20353150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles.
    Shevlin SA; Kerkeni B; Guo ZX
    Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, energy, vibrational spectrum, and Bader's analysis of π···H hydrogen bonds and H(-δ)···H(+δ) dihydrogen bonds.
    de Oliveira BG
    Phys Chem Chem Phys; 2013 Jan; 15(1):37-79. PubMed ID: 23138158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Pressure Studies of 4-Acetamidobenzenesulfonyl Azide: Combined Raman Scattering, IR Absorption, and Synchrotron X-ray Diffraction Measurements.
    Jiang J; Zhu P; Li D; Chen Y; Li M; Wang X; Liu B; Cui Q; Zhu H
    J Phys Chem B; 2016 Nov; 120(46):12015-12022. PubMed ID: 27788330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure, vibrational frequencies and polarizability distribution in hydrogen-bonded salts of pyromellitic acid.
    Dos Santos LHR; Krawczuk A; Franco CHJ; Diniz R
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Apr; 76(Pt 2):144-156. PubMed ID: 32831218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transfer via the dative N-B bond and dihydrogen contacts. Experimental and theoretical electron density studies of small Lewis acid-base adducts.
    Mebs S; Grabowsky S; Förster D; Kickbusch R; Hartl M; Daemen LL; Morgenroth W; Luger P; Paulus B; Lentz D
    J Phys Chem A; 2010 Sep; 114(37):10185-96. PubMed ID: 20726618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR study of Li-assisted dehydrogenation of ammonia borane.
    Kobayashi T; Hlova IZ; Singh NK; Pecharsky VK; Pruski M
    Inorg Chem; 2012 Apr; 51(7):4108-15. PubMed ID: 22435842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-Induced Polymerization of LiN(CN)
    Keefer DW; Gou H; Purdy AP; Epshteyn A; Kim DY; Badding JV; Strobel TA
    J Phys Chem A; 2016 Dec; 120(47):9370-9377. PubMed ID: 27792350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the structural, electronic, and vibrational properties of NH3BH3 and LiNH2BH3: theory and experiment.
    Lee SM; Kang XD; Wang P; Cheng HM; Lee YH
    Chemphyschem; 2009 Aug; 10(11):1825-33. PubMed ID: 19598195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical model of infrared spectra of hydrogen bonds in molecular crystals and its application to interpretation of infrared spectra of 1-methylthymine.
    Boczar M; Boda Ł; Wójcik MJ
    J Chem Phys; 2006 Aug; 125(8):084709. PubMed ID: 16965041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.