BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33060770)

  • 1. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer.
    Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D
    Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the force sensitivity of a squeezed light optomechanical interferometer.
    Subhash S; Das S; Dey TN; Li Y; Davuluri S
    Opt Express; 2023 Jan; 31(1):177-191. PubMed ID: 36606959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum fisher information of an optomechanical force sensor driven by a squeezed vacuum field.
    Lee CW; Lee JH; Joo J; Seok H
    Opt Express; 2022 Jul; 30(14):25249-25261. PubMed ID: 36237059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.
    Buchmann LF; Schreppler S; Kohler J; Spethmann N; Stamper-Kurn DM
    Phys Rev Lett; 2016 Jul; 117(3):030801. PubMed ID: 27472106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Squeezed vacuum interaction with an optomechanical cavity containing a quantum well.
    Jabri H; Eleuch H
    Sci Rep; 2022 Mar; 12(1):3658. PubMed ID: 35256636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light.
    Pezzé L; Smerzi A
    Phys Rev Lett; 2008 Feb; 100(7):073601. PubMed ID: 18352550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.
    Yang RG; Zhang J; Zhai ZH; Zhai SQ; Liu K; Gao JR
    Opt Express; 2015 Aug; 23(16):21323-33. PubMed ID: 26367980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Stokes-operator squeezing for continuous-variable orbital angular momentum.
    Guo J; Cai C; Ma L; Liu K; Sun H; Gao J
    Sci Rep; 2017 Jun; 7(1):4434. PubMed ID: 28667303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent control of vacuum squeezing in the gravitational-wave detection band.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2006 Jul; 97(1):011101. PubMed ID: 16907363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation.
    Korobko M; Kleybolte L; Ast S; Miao H; Chen Y; Schnabel R
    Phys Rev Lett; 2017 Apr; 118(14):143601. PubMed ID: 28430507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator.
    Serikawa T; Yoshikawa JI; Makino K; Frusawa A
    Opt Express; 2016 Dec; 24(25):28383-28391. PubMed ID: 27958548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy.
    Pooser RC; Savino N; Batson E; Beckey JL; Garcia J; Lawrie BJ
    Phys Rev Lett; 2020 Jun; 124(23):230504. PubMed ID: 32603167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry.
    Pezzé L; Smerzi A; Khoury G; Hodelin JF; Bouwmeester D
    Phys Rev Lett; 2007 Nov; 99(22):223602. PubMed ID: 18233283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the squeezed vacuum state by a bichromatic local oscillator.
    Li W; Yu X; Zhang J
    Opt Lett; 2015 Nov; 40(22):5299-302. PubMed ID: 26565859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity enhanced parametric homodyne detection of a squeezed quantum comb.
    Tian Y; Sun X; Wang Y; Li Q; Tian L; Zheng Y
    Opt Lett; 2022 Feb; 47(3):533-536. PubMed ID: 35103674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-to-noise ratio in squeezed-light laser radar.
    Rubin MA; Kaushik S
    Appl Opt; 2009 Aug; 48(23):4597-609. PubMed ID: 19668274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squeezed light from a silicon micromechanical resonator.
    Safavi-Naeini AH; Gröblacher S; Hill JT; Chan J; Aspelmeyer M; Painter O
    Nature; 2013 Aug; 500(7461):185-9. PubMed ID: 23925241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanical squeezing with pulse modulation.
    Xiong B; Chao S; Shan C; Liu J
    Opt Lett; 2022 Nov; 47(21):5545-5548. PubMed ID: 37219265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.