BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33061381)

  • 1. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite.
    Zhao Q; Tang H; Ren L; Wei J
    Int J Nanomedicine; 2020; 15():7279-7295. PubMed ID: 33061381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.
    Xia Y; Zhou P; Wang F; Qiu C; Wang P; Zhang Y; Zhao L; Xu S
    Int J Nanomedicine; 2016; 11():3435-49. PubMed ID: 27555766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair.
    Wu Z; Zheng K; Zhang J; Tang T; Guo H; Boccaccini AR; Wei J
    J Mater Chem B; 2016 Dec; 4(48):7974-7988. PubMed ID: 32263787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate.
    Wu Z; Li Q; Pan Y; Yao Y; Tang S; Su J; Shin JW; Wei J; Zhao J
    Int J Nanomedicine; 2017; 12():3637-3651. PubMed ID: 28553104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation of MgF
    Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y
    Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds.
    Kang YG; Wei J; Shin JW; Wu YR; Su J; Park YS; Shin JW
    Int J Nanomedicine; 2018; 13():1107-1117. PubMed ID: 29520139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of cell responses and bone ingrowth into macro-microporous implants of nano-bioglass/polyetheretherketone composite and enhanced antibacterial activity by release of hinokitiol.
    Zhang J; Wei W; Yang L; Pan Y; Wang X; Wang T; Tang S; Yao Y; Hong H; Wei J
    Colloids Surf B Biointerfaces; 2018 Apr; 164():347-357. PubMed ID: 29413616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation.
    Ba Z; Chen Z; Huang Y; Feng D; Zhao Q; Zhu J; Wu D
    Int J Nanomedicine; 2018; 13():3883-3896. PubMed ID: 30013342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.
    Lai Y; Cao H; Wang X; Chen S; Zhang M; Wang N; Yao Z; Dai Y; Xie X; Zhang P; Yao X; Qin L
    Biomaterials; 2018 Jan; 153():1-13. PubMed ID: 29096397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering.
    Zhang X; Zhang C; Xu W; Zhong B; Lin F; Zhang J; Wang Q; Ji J; Wei J; Zhang Y
    Int J Nanomedicine; 2015; 10():6699-708. PubMed ID: 26604746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zein regulating apatite mineralization, degradability,
    Ru J; Wei Q; Yang L; Qin J; Tang L; Wei J; Guo L; Niu Y
    RSC Adv; 2018 May; 8(34):18745-18756. PubMed ID: 35539669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration.
    Rath P; Mandal S; Das P; Sahoo SN; Mandal S; Ghosh D; Nandi SK; Roy M
    J Mater Chem B; 2024 Jun; 12(24):5869-5883. PubMed ID: 38775079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.
    Mou P; Peng H; Zhou L; Li L; Li H; Huang Q
    Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401
    [No Abstract]   [Full Text] [Related]  

  • 17. Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction.
    Wang X; Zhao D; Ren H; Yan Y; Li S
    J Mater Sci Mater Med; 2021 Jan; 32(1):16. PubMed ID: 33491099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and properties of nano-hydroxyapatite/poly(butylene succinate) porous scaffold for bone tissue engineering prepared by using ethanol as porogen.
    Li G; Qin S; Liu X; Zhang D; He M
    J Biomater Appl; 2019 Jan; 33(6):776-791. PubMed ID: 30482129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of three dimensional bioactive Sr
    Ramadas M; Ferreira JMF; Ballamurugan AM
    J Tissue Eng Regen Med; 2021 Jun; 15(6):577-585. PubMed ID: 33843156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast/bone-tissue responses to porous surface of polyetheretherketone-nanoporous lithium-doped magnesium silicate blends' integration with polyetheretherketone.
    Wang L; Zhang K; Hao Y; Liu M; Wu W
    Int J Nanomedicine; 2019; 14():4975-4989. PubMed ID: 31371942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.