These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nucleation of W-Rich Laves Phase Nanoparticles in Tempered Martensite Ferritic Steel During Long-Term Aging at Elevated Temperature. Kim C J Nanosci Nanotechnol; 2020 Jul; 20(7):4489-4493. PubMed ID: 31968503 [TBL] [Abstract][Full Text] [Related]
6. Up-Scaling of Thermomechanically Induced Laves Phase Precipitation in High Performance Ferritic (HiperFer) Stainless Steels. Pöpperlová J; Fan X; Kuhn B; Krupp U Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810595 [TBL] [Abstract][Full Text] [Related]
7. Effect of Long-Term Thermal Aging on Microstructure Evolution and Creep Deformation Behavior of a Novel 11Cr-3W-3Co Martensite Ferritic Steel. Zhao H; Han X; Wang M; Wang Z Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629684 [TBL] [Abstract][Full Text] [Related]
8. Evolution of Precipitated Phases during Creep of G115/Sanicro25 Dissimilar Steel Welded Joints. Yang M; Zhang Z; Li L Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501106 [TBL] [Abstract][Full Text] [Related]
9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Song G; Sun Z; Li L; Xu X; Rawlings M; Liebscher CH; Clausen B; Poplawsky J; Leonard DN; Huang S; Teng Z; Liu CT; Asta MD; Gao Y; Dunand DC; Ghosh G; Chen M; Fine ME; Liaw PK Sci Rep; 2015 Nov; 5():16327. PubMed ID: 26548303 [TBL] [Abstract][Full Text] [Related]
10. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Abe F Sci Technol Adv Mater; 2008 Jan; 9(1):013002. PubMed ID: 27877920 [TBL] [Abstract][Full Text] [Related]
11. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C. Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807 [TBL] [Abstract][Full Text] [Related]
12. Achieving High Strength and Creep Resistance in Inconel 740H Superalloy through Wire-Arc Additive Manufacturing and Thermodynamic-Guided Heat Treatment. Sridar S; Ladinos Pizano LF; Klecka MA; Xiong W Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834525 [TBL] [Abstract][Full Text] [Related]
13. Modelling the formation and self-healing of creep damage in iron-based alloys. Versteylen CD; Sluiter MHF; van Dijk NH J Mater Sci; 2018; 53(20):14758-14773. PubMed ID: 30956350 [TBL] [Abstract][Full Text] [Related]
15. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C. Yang L; Zhao F; Ding W Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906175 [TBL] [Abstract][Full Text] [Related]
16. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C. Xu L; He Y; Kang Y; Jung JS; Shin K Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827 [TBL] [Abstract][Full Text] [Related]
17. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Taneike M; Abe F; Sawada K Nature; 2003 Jul; 424(6946):294-6. PubMed ID: 12867976 [TBL] [Abstract][Full Text] [Related]
18. Nanosized-Precipitate Behavior of Ferritic 11Cr Heat-Resistance Steel Subjected to High Temperature Creep Damage. Kim C J Nanosci Nanotechnol; 2019 Apr; 19(4):2421-2425. PubMed ID: 30487013 [TBL] [Abstract][Full Text] [Related]
19. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases. Lopez Barrilao J; Kuhn B; Wessel E Micron; 2018 May; 108():11-18. PubMed ID: 29544163 [TBL] [Abstract][Full Text] [Related]
20. Active Crack Obstruction Mechanisms in Crofer Fischer T; Kuhn B Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]