These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33061954)

  • 1. Effects and Mechanisms of Acupuncture Combined with Mesenchymal Stem Cell Transplantation on Neural Recovery after Spinal Cord Injury: Progress and Prospects.
    Tang H; Guo Y; Zhao Y; Wang S; Wang J; Li W; Qin S; Gong Y; Fan W; Chen Z; Guo Y; Xu Z; Fang Y
    Neural Plast; 2020; 2020():8890655. PubMed ID: 33061954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury.
    Sun L; Wang F; Chen H; Liu D; Qu T; Li X; Xu D; Liu F; Yin Z; Chen Y
    Cell Transplant; 2019 Jul; 28(7):893-906. PubMed ID: 31012325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury.
    Yan Q; Ruan JW; Ding Y; Li WJ; Li Y; Zeng YS
    Exp Toxicol Pathol; 2011 Jan; 63(1-2):151-6. PubMed ID: 20005688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.
    Kumagai G; Tsoulfas P; Toh S; McNiece I; Bramlett HM; Dietrich WD
    Exp Neurol; 2013 Oct; 248():369-80. PubMed ID: 23856436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord.
    Liu Z; Ding Y; Zeng YS
    Curr Med Chem; 2011; 18(33):5165-71. PubMed ID: 22050762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury.
    Stewart AN; Kendziorski G; Deak ZM; Brown DJ; Fini MN; Copely KL; Rossignol J; Dunbar GL
    Brain Res; 2017 Oct; 1672():91-105. PubMed ID: 28734802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature.
    Zeng YS; Ding Y; Xu HY; Zeng X; Lai BQ; Li G; Ma YH
    CNS Neurosci Ther; 2022 May; 28(5):635-647. PubMed ID: 35174644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis.
    Yousefifard M; Nasseri Maleki S; Askarian-Amiri S; Vaccaro AR; Chapman JR; Fehlings MG; Hosseini M; Rahimi-Movaghar V
    J Neurosurg Spine; 2019 Nov; 32(2):269-284. PubMed ID: 31675724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: A combo cell therapy approach.
    Hosseini SM; Sani M; Haider KH; Dorvash M; Ziaee SM; Karimi A; Namavar MR
    Neurosci Lett; 2018 Mar; 668():138-146. PubMed ID: 29317311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subarachnoid transplantation of human umbilical cord mesenchymal stem cell in rodent model with subacute incomplete spinal cord injury: Preclinical safety and efficacy study.
    Yang Y; Cao TT; Tian ZM; Gao H; Wen HQ; Pang M; He WJ; Wang NX; Chen YY; Wang Y; Li H; Lin JW; Kang Z; Li MM; Liu B; Rong LM
    Exp Cell Res; 2020 Oct; 395(2):112184. PubMed ID: 32707134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells.
    Xiao Z; Tang F; Zhao Y; Han G; Yin N; Li X; Chen B; Han S; Jiang X; Yun C; Zhao C; Cheng S; Zhang S; Dai J
    Cell Transplant; 2018 Jun; 27(6):907-915. PubMed ID: 29871514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reviews on acupuncture for cellular signal transduction in spinal cord injury].
    Liu J; Zhang H; Huang G; Xu M; Zhang J; Yin X
    Zhongguo Zhen Jiu; 2017 Jun; 37(6):680-684. PubMed ID: 29231515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal Cord Injury: How Could Acupuncture Help?
    Fan Q; Cavus O; Xiong L; Xia Y
    J Acupunct Meridian Stud; 2018 Aug; 11(4):124-132. PubMed ID: 29753705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A.
    Peng Z; Li X; Fu M; Zhu K; Long L; Zhao X; Chen Q; Deng DYB; Wan Y
    J Neurochem; 2019 Sep; 150(6):709-722. PubMed ID: 31339573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury.
    Li X; Tan J; Xiao Z; Zhao Y; Han S; Liu D; Yin W; Li J; Li J; Wanggou S; Chen B; Ren C; Jiang X; Dai J
    Sci Rep; 2017 Mar; 7():43559. PubMed ID: 28262732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury.
    Pang QM; Deng KQ; Zhang M; Wu XC; Yang RL; Fu SP; Lin FQ; Zhang Q; Ao J; Zhang T
    Biomed Pharmacother; 2023 Jan; 157():114011. PubMed ID: 36410123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats.
    Melo FR; Bressan RB; Forner S; Martini AC; Rode M; Delben PB; Rae GA; Figueiredo CP; Trentin AG
    Cell Mol Neurobiol; 2017 Jul; 37(5):941-947. PubMed ID: 27510317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.