These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33062051)

  • 1. Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw.
    Nguyen DT; Gomez LD; Harper A; Halpin C; Waugh R; Simister R; Whitehead C; Oakey H; Nguyen HT; Nguyen TV; Duong TX; McQueen-Mason SJ
    Biotechnol Biofuels; 2020; 13():165. PubMed ID: 33062051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage Mapping of Stem Saccharification Digestibility in Rice.
    Liu B; Gómez LD; Hua C; Sun L; Ali I; Huang L; Yu C; Simister R; Steele-King C; Gan Y; McQueen-Mason SJ
    PLoS One; 2016; 11(7):e0159117. PubMed ID: 27415441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice.
    Hu Z; Wang Y; Liu J; Li Y; Wang Y; Huang J; Ai Y; Chen P; He Y; Aftab MN; Wang L; Peng L
    Biotechnol Biofuels; 2021 Jun; 14(1):144. PubMed ID: 34174936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.
    Hu Z; Zhang G; Muhammad A; Samad RA; Wang Y; Walton JD; He Y; Peng L; Wang L
    Sci Rep; 2018 Feb; 8(1):3636. PubMed ID: 29483532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing.
    Yang X; Xia X; Zeng Y; Nong B; Zhang Z; Wu Y; Xiong F; Zhang Y; Liang H; Deng G; Li D
    PLoS One; 2018; 13(5):e0196690. PubMed ID: 29746484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass recalcitrance in barley, wheat and triticale straw: Correlation of biomass quality with classic agronomical traits.
    Ostos Garrido FJ; Pistón F; Gómez LD; McQueen-Mason SJ
    PLoS One; 2018; 13(11):e0205880. PubMed ID: 30403701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of saccharification and fermentation of steam exploded rice straw and rice husk.
    Wood IP; Cao HG; Tran L; Cook N; Ryden P; Wilson DR; Moates GK; Collins SR; Elliston A; Waldron KW
    Biotechnol Biofuels; 2016; 9(1):193. PubMed ID: 27602056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping and candidate genes associated with saccharification yield in sorghum.
    Wang YH; Acharya A; Burrell AM; Klein RR; Klein PE; Hasenstein KH
    Genome; 2013 Nov; 56(11):659-65. PubMed ID: 24299105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy.
    Huang J; Li Y; Wang Y; Chen Y; Liu M; Wang Y; Zhang R; Zhou S; Li J; Tu Y; Hao B; Peng L; Xia T
    Biotechnol Biofuels; 2017; 10():294. PubMed ID: 29234462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw.
    Panahabadi R; Ahmadikhah A; McKee LS; Ingvarsson PK; Farrokhi N
    Plant Genome; 2022 Mar; 15(1):e20174. PubMed ID: 34806838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome wide association studies and candidate gene mining for understanding the genetic basis of straw silica content in a set of
    Gowda RSR; Sharma S; Gill RS; Mangat GS; Bhatia D
    Front Plant Sci; 2023; 14():1174266. PubMed ID: 37324704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants.
    Wu Z; Zhang M; Wang L; Tu Y; Zhang J; Xie G; Zou W; Li F; Guo K; Li Q; Gao C; Peng L
    Biotechnol Biofuels; 2013 Dec; 6(1):183. PubMed ID: 24341349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variation and association mapping for 12 agronomic traits in indica rice.
    Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X
    BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor.
    Tian Y; Lin CY; Park JH; Wu CY; Kakumanu R; Pidatala VR; Vuu KM; Rodriguez A; Shih PM; Baidoo EEK; Temple S; Simmons BA; Gladden JM; Scheller HV; Eudes A
    Biotechnol Biofuels; 2021 Nov; 14(1):217. PubMed ID: 34801067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring tomato Solanum pennellii introgression lines for residual biomass and enzymatic digestibility traits.
    Caruso G; Gomez LD; Ferriello F; Andolfi A; Borgonuovo C; Evidente A; Simister R; McQueen-Mason SJ; Carputo D; Frusciante L; Ercolano MR
    BMC Genet; 2016 Apr; 17():56. PubMed ID: 27044251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying natural genotypes of grain number per panicle in rice (Oryza sativa L.) by association mapping.
    Xie J; Li F; Khan NU; Zhu X; Wang X; Zhang Z; Ma X; Zhao Y; Zhang Q; Zhang S; Zhang Z; Li J; Li Z; Zhang H
    Genes Genomics; 2019 Mar; 41(3):283-295. PubMed ID: 30456522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping.
    Famoso AN; Zhao K; Clark RT; Tung CW; Wright MH; Bustamante C; Kochian LV; McCouch SR
    PLoS Genet; 2011 Aug; 7(8):e1002221. PubMed ID: 21829395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.).
    Ghazy MI; Salem KFM; Sallam A
    Mol Biol Rep; 2021 Jan; 48(1):157-170. PubMed ID: 33300089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.