These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33062445)

  • 21. Understanding 'saturation' of radar signals over forests.
    Joshi N; Mitchard ETA; Brolly M; Schumacher J; Fernández-Landa A; Johannsen VK; Marchamalo M; Fensholt R
    Sci Rep; 2017 Jun; 7(1):3505. PubMed ID: 28615620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data.
    Tan P; Zhu J; Fu H; Wang C; Liu Z; Zhang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Estimating average tree height in Xixiaoshan Forest Farm, Northeast China based on Sentinel-1 with Sentinel-2A data].
    Chen YY; Zhang XL; Gao XL; Gao JP
    Ying Yong Sheng Tai Xue Bao; 2021 Aug; 32(8):2839-2846. PubMed ID: 34664457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Competition of key tree species with selective cutting at different intensities in broadleaved-korean pine mixed forest in the Changbai Mountain, China.].
    Tang Y; Chen H; Tong YW; Zhu Q; Zhou WM; Zhou L; Dai LM; Yu DP
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1469-1478. PubMed ID: 31107001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin.
    Chabi A; Lautenbach S; Orekan VO; Kyei-Baffour N
    Carbon Balance Manag; 2016 Dec; 11(1):16. PubMed ID: 27594897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forest degradation and biomass loss along the Chocó region of Colombia.
    Meyer V; Saatchi S; Ferraz A; Xu L; Duque A; García M; Chave J
    Carbon Balance Manag; 2019 Mar; 14(1):2. PubMed ID: 30904964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State.
    Schuster WS; Griffin KL; Roth H; Turnbull MH; Whitehead D; Tissue DT
    Tree Physiol; 2008 Apr; 28(4):537-49. PubMed ID: 18244941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.
    Shirima DD; Pfeifer M; Platts PJ; Totland Ø; Moe SR
    PLoS One; 2015; 10(11):e0142784. PubMed ID: 26559410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.
    Garcia M; Saatchi S; Ferraz A; Silva CA; Ustin S; Koltunov A; Balzter H
    Carbon Balance Manag; 2017 Dec; 12(1):4. PubMed ID: 28413848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A macroecological analysis of SERA derived forest heights and implications for forest volume remote sensing.
    Brolly M; Woodhouse IH; Niklas KJ; Hammond ST
    PLoS One; 2012; 7(3):e33927. PubMed ID: 22457800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought.
    Frolking S; Hagen S; Braswell B; Milliman T; Herrick C; Peterson S; Roberts D; Keller M; Palace M
    PLoS One; 2017; 12(9):e0183308. PubMed ID: 28873422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global patterns and determinants of forest canopy height.
    Tao S; Guo Q; Li C; Wang Z; Fang J
    Ecology; 2016 Dec; 97(12):3265-3270. PubMed ID: 27912007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR.
    Nguyen HT; Hutyra LR; Hardiman BS; Raciti SM
    Ecol Appl; 2016 Mar; 26(2):587-601. PubMed ID: 27209797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forest structure parameter extraction using SPOT-7 satellite data by object- and pixel-based classification methods.
    Rahimizadeh N; Babaie Kafaky S; Sahebi MR; Mataji A
    Environ Monit Assess; 2019 Dec; 192(1):43. PubMed ID: 31836941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural forest biomass estimation based on plantation information using PALSAR data.
    Avtar R; Suzuki R; Sawada H
    PLoS One; 2014; 9(1):e86121. PubMed ID: 24465908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Growth characteristics of different tree species in shelterbelts in the depression area of Hebei Province, China.].
    Zhang JM; Yu XX; Jia GD; Liu ZQ; Lu WW
    Ying Yong Sheng Tai Xue Bao; 2017 Oct; 28(10):3174-3180. PubMed ID: 29692134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.
    Promis A; Allen RB
    PLoS One; 2017; 12(11):e0188686. PubMed ID: 29190657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data.
    Jochem A; Hollaus M; Rutzinger M; Höfle B
    Sensors (Basel); 2011; 11(1):278-95. PubMed ID: 22346577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to map forest structure from aircraft, one tree at a time.
    Dalponte M; Frizzera L; Gianelle D
    Ecol Evol; 2018 Jun; 8(11):5611-5618. PubMed ID: 29938078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors controlling throughfall in a Pinus tabulaeformis forest in North China.
    Wei X; Bi H; Liang W
    Sci Rep; 2017 Oct; 7(1):14060. PubMed ID: 29070837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.