These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 33063768)
1. [A new occupational and environmental hazard - nanoplastic]. Rakowski M; Grzelak A Med Pr; 2020 Dec; 71(6):743-756. PubMed ID: 33063768 [TBL] [Abstract][Full Text] [Related]
2. Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic. Liu Z; Cai M; Yu P; Chen M; Wu D; Zhang M; Zhao Y Aquat Toxicol; 2018 Nov; 204():1-8. PubMed ID: 30153596 [TBL] [Abstract][Full Text] [Related]
3. The plastic brain: neurotoxicity of micro- and nanoplastics. Prüst M; Meijer J; Westerink RHS Part Fibre Toxicol; 2020 Jun; 17(1):24. PubMed ID: 32513186 [TBL] [Abstract][Full Text] [Related]
4. Nanoplastic Toxicity: Insights and Challenges from Experimental Model Systems. Schröter L; Ventura N Small; 2022 Aug; 18(31):e2201680. PubMed ID: 35810458 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex. Zhang W; Liu Z; Tang S; Li D; Jiang Q; Zhang T Chemosphere; 2020 Jan; 238():124563. PubMed ID: 31454744 [TBL] [Abstract][Full Text] [Related]
6. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Ban M; Shimoda R; Chen J Toxicol In Vitro; 2021 Oct; 76():105225. PubMed ID: 34293433 [TBL] [Abstract][Full Text] [Related]
7. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: Application of transcriptome profiling in risk assessment of nanoplastics. Liu Z; Li Y; Pérez E; Jiang Q; Chen Q; Jiao Y; Huang Y; Yang Y; Zhao Y J Hazard Mater; 2021 Jan; 402():123778. PubMed ID: 33254789 [TBL] [Abstract][Full Text] [Related]
8. Determination of the pharmaceuticals-nano/microplastics in aquatic systems by analytical and instrumental methods. Pashaei R; Dzingelevičienė R; Abbasi S; Szultka-Młyńska M; Buszewski B Environ Monit Assess; 2022 Jan; 194(2):93. PubMed ID: 35028740 [TBL] [Abstract][Full Text] [Related]
9. Review of ecotoxicological studies of widely used polystyrene nanoparticles. Kelpsiene E; Ekvall MT; Lundqvist M; Torstensson O; Hua J; Cedervall T Environ Sci Process Impacts; 2022 Jan; 24(1):8-16. PubMed ID: 34825687 [TBL] [Abstract][Full Text] [Related]
10. Two sigma and two mu class genes of glutathione S-transferase in the waterflea Daphnia pulex: Molecular characterization and transcriptional response to nanoplastic exposure. Liu Z; Jiao Y; Chen Q; Li Y; Tian J; Huang Y; Cai M; Wu D; Zhao Y Chemosphere; 2020 Jun; 248():126065. PubMed ID: 32045975 [TBL] [Abstract][Full Text] [Related]
11. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Greven AC; Merk T; Karagöz F; Mohr K; Klapper M; Jovanović B; Palić D Environ Toxicol Chem; 2016 Dec; 35(12):3093-3100. PubMed ID: 27207313 [TBL] [Abstract][Full Text] [Related]
12. The fate of plastic in the ocean environment - a minireview. Wayman C; Niemann H Environ Sci Process Impacts; 2021 Mar; 23(2):198-212. PubMed ID: 33475108 [TBL] [Abstract][Full Text] [Related]
13. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664 [TBL] [Abstract][Full Text] [Related]
15. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Busch M; Bredeck G; Kämpfer AAM; Schins RPF Environ Res; 2021 Feb; 193():110536. PubMed ID: 33253701 [TBL] [Abstract][Full Text] [Related]
16. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Fournier SB; D'Errico JN; Adler DS; Kollontzi S; Goedken MJ; Fabris L; Yurkow EJ; Stapleton PA Part Fibre Toxicol; 2020 Oct; 17(1):55. PubMed ID: 33099312 [TBL] [Abstract][Full Text] [Related]
17. Dietary exposure to four sizes of spherical polystyrene, polylactide and silica nanoparticles does not affect mortality, behaviour, feeding and energy assimilation of Gammarus roeseli. Götz A; Beggel S; Geist J Ecotoxicol Environ Saf; 2022 Jun; 238():113581. PubMed ID: 35525113 [TBL] [Abstract][Full Text] [Related]
18. 3D printer waste, a new source of nanoplastic pollutants. Rodríguez-Hernández AG; Chiodoni A; Bocchini S; Vazquez-Duhalt R Environ Pollut; 2020 Dec; 267():115609. PubMed ID: 33254724 [TBL] [Abstract][Full Text] [Related]
19. Understanding the impact of nanoplastics on reproductive health: Exposure pathways, mechanisms, and implications. Ye J; Ren Y; Dong Y; Fan D Toxicology; 2024 May; 504():153792. PubMed ID: 38554767 [TBL] [Abstract][Full Text] [Related]
20. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. Jeong B; Baek JY; Koo J; Park S; Ryu YK; Kim KS; Zhang S; Chung C; Dogan R; Choi HS; Um D; Kim TK; Lee WS; Jeong J; Shin WH; Lee JR; Kim NS; Lee DY J Hazard Mater; 2022 Mar; 426():127815. PubMed ID: 34823950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]