These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33063813)

  • 1. Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes.
    Nicholls D; Lee J; Amari H; Stevens AJ; Mehdi BL; Browning ND
    Nanoscale; 2020 Oct; 12(41):21248-21254. PubMed ID: 33063813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy.
    Lee J; Nicholls D; Browning ND; Mehdi BL
    Phys Chem Chem Phys; 2021 Sep; 23(33):17766-17773. PubMed ID: 33729249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.
    Stevens A; Yang H; Carin L; Arslan I; Browning ND
    Microscopy (Oxf); 2014 Feb; 63(1):41-51. PubMed ID: 24151325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways.
    Ortega E; Nicholls D; Browning ND; de Jonge N
    Sci Rep; 2021 Nov; 11(1):22722. PubMed ID: 34811427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4D-STEM of Beam-Sensitive Materials.
    Bustillo KC; Zeltmann SE; Chen M; Donohue J; Ciston J; Ophus C; Minor AM
    Acc Chem Res; 2021 Jun; 54(11):2543-2551. PubMed ID: 33979131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-Sampled Imaging for STEM: Maximising Image Speed, Resolution and Precision Through Reconstruction Parameter Refinement.
    Nicholls D; Wells J; Stevens A; Zheng Y; Castagna J; Browning ND
    Ultramicroscopy; 2022 Mar; 233():113451. PubMed ID: 34915288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans.
    Li X; Dyck O; Kalinin SV; Jesse S
    Microsc Microanal; 2018 Dec; 24(6):623-633. PubMed ID: 30588912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
    Johnston-Peck AC; DuChene JS; Roberts AD; Wei WD; Herzing AA
    Ultramicroscopy; 2016 Nov; 170():1-9. PubMed ID: 27469265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIM-STEM Lab: Incorporating Compressed Sensing Theory for Fast STEM Simulation.
    Robinson AW; Nicholls D; Wells J; Moshtaghpour A; Kirkland A; Browning ND
    Ultramicroscopy; 2022 Dec; 242():113625. PubMed ID: 36183423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope.
    Caswell TA; Ercius P; Tate MW; Ercan A; Gruner SM; Muller DA
    Ultramicroscopy; 2009 Mar; 109(4):304-11. PubMed ID: 19162398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron backscattered diffraction using a new monolithic direct detector: High resolution and fast acquisition.
    Wang F; Echlin MP; Taylor AA; Shin J; Bammes B; Levin BDA; De Graef M; Pollock TM; Gianola DS
    Ultramicroscopy; 2021 Jan; 220():113160. PubMed ID: 33197699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of focused ion beam induced increases in sample temperature: a case study of heat damage in biological samples.
    Wolff A; Klingner N; Thompson W; Zhou Y; Lin J; Peng YY; Ramshaw JAM; Xiao Y
    J Microsc; 2018 Oct; 272(1):47-59. PubMed ID: 30019759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning.
    Hujsak K; Myers BD; Roth E; Li Y; Dravid VP
    Microsc Microanal; 2016 Aug; 22(4):778-88. PubMed ID: 27456711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of sample thickness and in-concentration of InGaAs quantum wells by transmission measurements in a scanning electron microscope.
    Volkenandt T; Müller E; Hu DZ; Schaadt DM; Gerthsen D
    Microsc Microanal; 2010 Oct; 16(5):604-13. PubMed ID: 20633317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How should a fixed budget of dwell time be spent in scanning electron microscopy to optimize image quality?
    Trampert P; Bourghorbel F; Potocek P; Peemen M; Schlinkmann C; Dahmen T; Slusallek P
    Ultramicroscopy; 2018 Aug; 191():11-17. PubMed ID: 29715521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.
    Hashimoto T; Thompson GE; Zhou X; Withers PJ
    Ultramicroscopy; 2016 Apr; 163():6-18. PubMed ID: 26855205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choice of operating voltage for a transmission electron microscope.
    Egerton RF
    Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High spatiotemporal-resolution imaging in the scanning transmission electron microscope.
    Ishikawa R; Jimbo Y; Terao M; Nishikawa M; Ueno Y; Morishita S; Mukai M; Shibata N; Ikuhara Y
    Microscopy (Oxf); 2020 Jul; 69(4):240-247. PubMed ID: 32244250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns.
    Zobelli A; Woo SY; Tararan A; Tizei LHG; Brun N; Li X; Stéphan O; Kociak M; Tencé M
    Ultramicroscopy; 2020 May; 212():112912. PubMed ID: 31812451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.