BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33063814)

  • 1. Matrix stiffness and cluster size collectively regulate dormancy versus proliferation in brain metastatic breast cancer cell clusters.
    Kondapaneni RV; Rao SS
    Biomater Sci; 2020 Dec; 8(23):6637-6646. PubMed ID: 33063814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells.
    Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS
    Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids.
    Kondapaneni RV; Shevde LA; Rao SS
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200114. PubMed ID: 36354182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform.
    Narkhede AA; Crenshaw JH; Manning RM; Rao SS
    J Biomed Mater Res A; 2018 Jul; 106(7):1832-1841. PubMed ID: 29468800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells.
    Goodarzi K; Lane R; Rao SS
    J Biomed Mater Res A; 2024 May; 112(5):710-720. PubMed ID: 38018303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation.
    Pradhan S; Slater JH
    Biomaterials; 2019 Sep; 215():119177. PubMed ID: 31176804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro system to study tumor dormancy and the switch to metastatic growth.
    Barkan D; Green JE
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21860375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties.
    Clark AM; Wheeler SE; Young CL; Stockdale L; Shepard Neiman J; Zhao W; Stolz DB; Venkataramanan R; Lauffenburger D; Griffith L; Wells A
    Lab Chip; 2016 Dec; 17(1):156-168. PubMed ID: 27910972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells.
    Liu C; Li M; Dong ZX; Jiang D; Li X; Lin S; Chen D; Zou X; Zhang XD; Luker GD
    Acta Biomater; 2021 Sep; 131():326-340. PubMed ID: 34246802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells.
    Ogba N; Manning NG; Bliesner BS; Ambler SK; Haughian JM; Pinto MP; Jedlicka P; Joensuu K; Heikkilä P; Horwitz KB
    Breast Cancer Res; 2014 Dec; 16(6):489. PubMed ID: 25475897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro.
    Matsuzaki S; Canis M; Pouly JL; Darcha C
    Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model.
    Cavo M; Fato M; Peñuela L; Beltrame F; Raiteri R; Scaglione S
    Sci Rep; 2016 Oct; 6():35367. PubMed ID: 27734939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis.
    Cordero A; Kanojia D; Miska J; Panek WK; Xiao A; Han Y; Bonamici N; Zhou W; Xiao T; Wu M; Ahmed AU; Lesniak MS
    Oncogene; 2019 Sep; 38(37):6445-6460. PubMed ID: 31324889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineered models to study tumor dormancy.
    Rao SS; Kondapaneni RV; Narkhede AA
    J Biol Eng; 2019; 13():3. PubMed ID: 30647771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis.
    Duchnowska R; Pęksa R; Radecka B; Mandat T; Trojanowski T; Jarosz B; Czartoryska-Arłukowicz B; Olszewski WP; Och W; Kalinka-Warzocha E; Kozłowski W; Kowalczyk A; Loi S; Biernat W; Jassem J;
    Breast Cancer Res; 2016 Apr; 18(1):43. PubMed ID: 27117582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.