BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33063984)

  • 1. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins.
    Monakhov MV; Matlashov ME; Colavita M; Song C; Shcherbakova DM; Antic SD; Verkhusha VV; Knöpfel T
    ACS Chem Neurosci; 2020 Nov; 11(21):3523-3531. PubMed ID: 33063984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared and far-red genetically encoded indicators of neuronal activity.
    Shcherbakova DM
    J Neurosci Methods; 2021 Oct; 362():109314. PubMed ID: 34375713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.
    Piao HH; Rajakumar D; Kang BE; Kim EH; Baker BJ
    J Neurosci; 2015 Jan; 35(1):372-85. PubMed ID: 25568129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically Encoded Voltage Indicators.
    Mollinedo-Gajate I; Song C; Knöpfel T
    Adv Exp Med Biol; 2021; 1293():209-224. PubMed ID: 33398815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators.
    Xu Y; Deng M; Zhang S; Yang J; Peng L; Chu J; Zou P
    ACS Chem Neurosci; 2019 Dec; 10(12):4768-4775. PubMed ID: 31725259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-speed, bright, red fluorescent voltage sensor to detect neural activity.
    Beck C; Gong Y
    Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two near-infrared genetically encoded voltage indicators.
    Song C; Matlashov ME; Shcherbakova DM; Antic SD; Verkhusha VV; Knöpfel T
    Neurophotonics; 2024 Apr; 11(2):024201. PubMed ID: 38090225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse.
    Lou S; Adam Y; Weinstein EN; Williams E; Williams K; Parot V; Kavokine N; Liberles S; Madisen L; Zeng H; Cohen AE
    J Neurosci; 2016 Oct; 36(43):11059-11073. PubMed ID: 27798186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
    Shcherbakova DM; Stepanenko OV; Turoverov KK; Verkhusha VV
    Trends Biotechnol; 2018 Dec; 36(12):1230-1243. PubMed ID: 30041828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices.
    Abdelfattah AS; Farhi SL; Zhao Y; Brinks D; Zou P; Ruangkittisakul A; Platisa J; Pieribone VA; Ballanyi K; Cohen AE; Campbell RE
    J Neurosci; 2016 Feb; 36(8):2458-72. PubMed ID: 26911693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation wavelength optimization improves photostability of ASAP-family GEVIs.
    Xu F; Shi DQ; Lau PM; Lin MZ; Bi GQ
    Mol Brain; 2018 Jun; 11(1):32. PubMed ID: 29866136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging.
    Qian Y; Cosio DMO; Piatkevich KD; Aufmkolk S; Su WC; Celiker OT; Schohl A; Murdock MH; Aggarwal A; Chang YF; Wiseman PW; Ruthazer ES; Boyden ES; Campbell RE
    PLoS Biol; 2020 Nov; 18(11):e3000965. PubMed ID: 33232322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics.
    Adam Y; Kim JJ; Lou S; Zhao Y; Xie ME; Brinks D; Wu H; Mostajo-Radji MA; Kheifets S; Parot V; Chettih S; Williams KJ; Gmeiner B; Farhi SL; Madisen L; Buchanan EK; Kinsella I; Zhou D; Paninski L; Harvey CD; Zeng H; Arlotta P; Campbell RE; Cohen AE
    Nature; 2019 May; 569(7756):413-417. PubMed ID: 31043747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolving capabilities of rhodopsin-based genetically encoded voltage indicators.
    Gong Y
    Curr Opin Chem Biol; 2015 Aug; 27():84-9. PubMed ID: 26143170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optical electrophysiology in behaving animals.
    Adam Y
    J Neurosci Methods; 2021 Apr; 353():109101. PubMed ID: 33600851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically Encoded Voltage Indicators: Opportunities and Challenges.
    Yang HH; St-Pierre F
    J Neurosci; 2016 Sep; 36(39):9977-89. PubMed ID: 27683896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dimeric fluorescent protein yields a bright, red-shifted GEVI capable of population signals in brain slice.
    Yi B; Kang BE; Lee S; Braubach S; Baker BJ
    Sci Rep; 2018 Oct; 8(1):15199. PubMed ID: 30315245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Towards optical in vivo electrophysiology].
    Lambot L; Gall D
    Med Sci (Paris); 2016 8-9; 32(8-9):768-70. PubMed ID: 27615186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.