BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33064112)

  • 1. Nile Red lifetime reveals microplastic identity.
    Sancataldo G; Avellone G; Vetri V
    Environ Sci Process Impacts; 2020 Nov; 22(11):2266-2275. PubMed ID: 33064112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection.
    Konde S; Ornik J; Prume JA; Taiber J; Koch M
    Mar Pollut Bull; 2020 Oct; 159():111475. PubMed ID: 32692678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique.
    Meyers N; Catarino AI; Declercq AM; Brenan A; Devriese L; Vandegehuchte M; De Witte B; Janssen C; Everaert G
    Sci Total Environ; 2022 Jun; 823():153441. PubMed ID: 35124051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nile red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics.
    Hengstmann E; Fischer EK
    Environ Monit Assess; 2019 Sep; 191(10):612. PubMed ID: 31489505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data.
    Monteleone A; Schary W; Wenzel F; Langhals H; Dietrich DR
    Chem Biol Interact; 2021 Jun; 342():109466. PubMed ID: 33865829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterstaining to Separate Nile Red-Stained Microplastic Particles from Terrestrial Invertebrate Biomass.
    Maxwell S H; Melinda K F; Matthew G
    Environ Sci Technol; 2020 May; 54(9):5580-5588. PubMed ID: 32298090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects.
    Shruti VC; Pérez-Guevara F; Roy PD; Kutralam-Muniasamy G
    J Hazard Mater; 2022 Feb; 423(Pt B):127171. PubMed ID: 34537648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and quantification of microplastics using Nile Red staining.
    Shim WJ; Song YK; Hong SH; Jang M
    Mar Pollut Bull; 2016 Dec; 113(1-2):469-476. PubMed ID: 28340965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive assessment of factors influencing Nile red staining: Eliciting solutions for efficient microplastics analysis.
    Wang C; Jiang L; Liu R; He M; Cui X; Wang C
    Mar Pollut Bull; 2021 Oct; 171():112698. PubMed ID: 34245991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of microplastics using 4-dimethylamino-4'-nitrostilbene solvatochromic fluorescence.
    Sancataldo G; Ferrara V; Bonomo FP; Chillura Martino DF; Licciardi M; Pignataro BG; Vetri V
    Microsc Res Tech; 2021 Dec; 84(12):2820-2831. PubMed ID: 34047435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of biological samples for microplastic identification by Nile Red.
    Prata JC; Sequeira IF; Monteiro SS; Silva ALP; da Costa JP; Dias-Pereira P; Fernandes AJS; da Costa FM; Duarte AC; Rocha-Santos T
    Sci Total Environ; 2021 Aug; 783():147065. PubMed ID: 34088143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nile Red staining for detecting microplastics in biota: Preliminary evidence.
    Nalbone L; Panebianco A; Giarratana F; Russell M
    Mar Pollut Bull; 2021 Nov; 172():112888. PubMed ID: 34454386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Rapid Method for Detecting Microplastics Based on Fluorescence Lifetime Imaging Technology (FLIM).
    Zhou F; Wang X; Wang G; Zuo Y
    Toxics; 2022 Mar; 10(3):. PubMed ID: 35324743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet.
    Dowarah K; Patchaiyappan A; Thirunavukkarasu C; Jayakumar S; Devipriya SP
    Mar Pollut Bull; 2020 Apr; 153():110982. PubMed ID: 32275539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples.
    Erni-Cassola G; Gibson MI; Thompson RC; Christie-Oleza JA
    Environ Sci Technol; 2017 Dec; 51(23):13641-13648. PubMed ID: 29112813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol.
    Vermeiren P; Muñoz C; Ikejima K
    Environ Pollut; 2020 Jul; 262():114298. PubMed ID: 32163807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated method for routine microplastic detection and quantification.
    Giardino M; Balestra V; Janner D; Bellopede R
    Sci Total Environ; 2023 Feb; 859(Pt 2):160036. PubMed ID: 36379342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property.
    Lv L; Qu J; Yu Z; Chen D; Zhou C; Hong P; Sun S; Li C
    Environ Pollut; 2019 Dec; 255(Pt 2):113283. PubMed ID: 31580990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplastic accumulation in commercial fish from the Adriatic Sea.
    Mistri M; Sfriso AA; Casoni E; Nicoli M; Vaccaro C; Munari C
    Mar Pollut Bull; 2022 Jan; 174():113279. PubMed ID: 34959102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of microplastic from soil by centrifugation and its application to agricultural soil.
    Grause G; Kuniyasu Y; Chien MF; Inoue C
    Chemosphere; 2022 Feb; 288(Pt 3):132654. PubMed ID: 34718018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.