These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33064143)

  • 1. DiSNEP: a Disease-Specific gene Network Enhancement to improve Prioritizing candidate disease genes.
    Ruan P; Wang S
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33064143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MultiNEP: a multi-omics network enhancement framework for prioritizing disease genes and metabolites simultaneously.
    Xu Z; Marchionni L; Wang S
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HumanNet v2: human gene networks for disease research.
    Hwang S; Kim CY; Yang S; Kim E; Hart T; Marcotte EM; Lee I
    Nucleic Acids Res; 2019 Jan; 47(D1):D573-D580. PubMed ID: 30418591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mutations in DNA methylation modification genes on genome-wide methylation landscapes and downstream gene activations in pan-cancer.
    Lee CJ; Ahn H; Jeong D; Pak M; Moon JH; Kim S
    BMC Med Genomics; 2020 Feb; 13(Suppl 3):27. PubMed ID: 32093698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression and DNA methylation analyses suggest that immune process-related ADCY6 is a prognostic factor of luminal-like breast cancer.
    Li W; Sang M; Hao X; Jia L; Wang Y; Shan B
    J Cell Biochem; 2020 Jul; 121(7):3537-3546. PubMed ID: 31886586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features.
    Gevaert O; Plevritis S
    Pac Symp Biocomput; 2013; ():123-34. PubMed ID: 23424118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting links between tumor samples and genes using 2-Layered graph based diffusion approach.
    Timilsina M; Yang H; Sahay R; Rebholz-Schuhmann D
    BMC Bioinformatics; 2019 Sep; 20(1):462. PubMed ID: 31500564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Core Genes and Key Pathways via Integrated Analysis of Gene Expression and DNA Methylation Profiles in Bladder Cancer.
    Zhang Y; Fang L; Zang Y; Xu Z
    Med Sci Monit; 2018 May; 24():3024-3033. PubMed ID: 29739919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenome-Wide Tobacco-Related Methylation Signature Identification and Their Multilevel Regulatory Network Inference for Lung Adenocarcinoma.
    Dong YM; Li M; He QE; Tong YF; Gao HZ; Zhang YZ; Wu YM; Hu J; Zhang N; Song K
    Biomed Res Int; 2020; 2020():2471915. PubMed ID: 32420331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HumanNet v3: an improved database of human gene networks for disease research.
    Kim CY; Baek S; Cha J; Yang S; Kim E; Marcotte EM; Hart T; Lee I
    Nucleic Acids Res; 2022 Jan; 50(D1):D632-D639. PubMed ID: 34747468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-network approach to identify differentially methylated gene communities in cancer.
    R V; Nazeer KAA
    Gene; 2019 May; 697():227-237. PubMed ID: 30797996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores.
    Gonçalves JP; Francisco AP; Moreau Y; Madeira SC
    PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.