These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33064187)
1. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine. Xu Y; Zhou D; Luo R; Yang X; Wang B; Xiong X; Shen W; Wang D; Wang Q Appl Microbiol Biotechnol; 2020 Dec; 104(23):9965-9977. PubMed ID: 33064187 [TBL] [Abstract][Full Text] [Related]
2. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Park SJ; Oh YH; Noh W; Kim HY; Shin JH; Lee EG; Lee S; David Y; Baylon MG; Song BK; Jegal J; Lee SY; Lee SH Biotechnol J; 2014 Oct; 9(10):1322-8. PubMed ID: 25124937 [TBL] [Abstract][Full Text] [Related]
3. An Artificial Pathway for Luo Z; Wang Z; Wang B; Lu Y; Yan L; Zhao Z; Bai T; Zhang J; Li H; Wang W; Cheng J Front Microbiol; 2022; 13():842804. PubMed ID: 35350620 [No Abstract] [Full Text] [Related]
4. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Cheng J; Tu W; Luo Z; Liang L; Gou X; Wang X; Liu C; Zhang G Front Bioeng Biotechnol; 2021; 9():726126. PubMed ID: 34604186 [TBL] [Abstract][Full Text] [Related]
5. An economically and environmentally acceptable synthesis of chiral drug intermediate L-pipecolic acid from biomass-derived lysine via artificially engineered microbes. Cheng J; Huang Y; Mi L; Chen W; Wang D; Wang Q J Ind Microbiol Biotechnol; 2018 Jun; 45(6):405-415. PubMed ID: 29749580 [TBL] [Abstract][Full Text] [Related]
6. Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine. Tani Y; Miyake R; Yukami R; Dekishima Y; China H; Saito S; Kawabata H; Mihara H Appl Microbiol Biotechnol; 2015 Jun; 99(12):5045-54. PubMed ID: 25547835 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer. Han T; Lee SY Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520 [TBL] [Abstract][Full Text] [Related]
11. Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum. Zhao X; Wu Y; Feng T; Shen J; Lu H; Zhang Y; Chou HH; Luo X; Keasling JD Metab Eng; 2023 May; 77():89-99. PubMed ID: 36933819 [TBL] [Abstract][Full Text] [Related]
12. [A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer]. Kang Y; Luo R; Lin F; Cheng J; Zhou Z; Wang D Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2070-2080. PubMed ID: 37212232 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Brito LF; Irla M; Nærdal I; Le SB; Delépine B; Heux S; Brautaset T Front Bioeng Biotechnol; 2021; 9():686319. PubMed ID: 34262896 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the Xu X; Rao ZM; Xu JZ; Zhang WG ACS Synth Biol; 2022 Feb; 11(2):760-769. PubMed ID: 35073050 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560 [TBL] [Abstract][Full Text] [Related]
16. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. Cheng J; Chen P; Song A; Wang D; Wang Q J Ind Microbiol Biotechnol; 2018 Aug; 45(8):719-734. PubMed ID: 29654382 [TBL] [Abstract][Full Text] [Related]
17. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Liu P; Zhang H; Lv M; Hu M; Li Z; Gao C; Xu P; Ma C Sci Rep; 2014 Jul; 4():5657. PubMed ID: 25012259 [TBL] [Abstract][Full Text] [Related]
19. An artificial pathway for trans-4-hydroxy-L-pipecolic acid production from L-lysine in Escherichia coli. Cheng J; Luo Z; Wang B; Yan L; Zhang S; Zhang J; Lu Y; Wang W Biosci Biotechnol Biochem; 2022 Sep; 86(10):1476-1481. PubMed ID: 35998310 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida. Muramatsu H; Mihara H; Yasuda M; Ueda M; Kurihara T; Esaki N Biosci Biotechnol Biochem; 2006 Sep; 70(9):2296-8. PubMed ID: 16960365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]