BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33064187)

  • 1. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine.
    Xu Y; Zhou D; Luo R; Yang X; Wang B; Xiong X; Shen W; Wang D; Wang Q
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):9965-9977. PubMed ID: 33064187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.
    Park SJ; Oh YH; Noh W; Kim HY; Shin JH; Lee EG; Lee S; David Y; Baylon MG; Song BK; Jegal J; Lee SY; Lee SH
    Biotechnol J; 2014 Oct; 9(10):1322-8. PubMed ID: 25124937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Artificial Pathway for
    Luo Z; Wang Z; Wang B; Lu Y; Yan L; Zhao Z; Bai T; Zhang J; Li H; Wang W; Cheng J
    Front Microbiol; 2022; 13():842804. PubMed ID: 35350620
    [No Abstract]   [Full Text] [Related]  

  • 4. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in
    Cheng J; Tu W; Luo Z; Liang L; Gou X; Wang X; Liu C; Zhang G
    Front Bioeng Biotechnol; 2021; 9():726126. PubMed ID: 34604186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An economically and environmentally acceptable synthesis of chiral drug intermediate L-pipecolic acid from biomass-derived lysine via artificially engineered microbes.
    Cheng J; Huang Y; Mi L; Chen W; Wang D; Wang Q
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):405-415. PubMed ID: 29749580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine.
    Tani Y; Miyake R; Yukami R; Dekishima Y; China H; Saito S; Kawabata H; Mihara H
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5045-54. PubMed ID: 25547835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.
    Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P
    Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer.
    Han T; Lee SY
    Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.
    Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY
    Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum.
    Zhao X; Wu Y; Feng T; Shen J; Lu H; Zhang Y; Chou HH; Luo X; Keasling JD
    Metab Eng; 2023 May; 77():89-99. PubMed ID: 36933819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer].
    Kang Y; Luo R; Lin F; Cheng J; Zhou Z; Wang D
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2070-2080. PubMed ID: 37212232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic
    Brito LF; Irla M; Nærdal I; Le SB; Delépine B; Heux S; Brautaset T
    Front Bioeng Biotechnol; 2021; 9():686319. PubMed ID: 34262896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the
    Xu X; Rao ZM; Xu JZ; Zhang WG
    ACS Synth Biol; 2022 Feb; 11(2):760-769. PubMed ID: 35073050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.
    Cheng J; Chen P; Song A; Wang D; Wang Q
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):719-734. PubMed ID: 29654382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.
    Liu P; Zhang H; Lv M; Hu M; Li Z; Gao C; Xu P; Ma C
    Sci Rep; 2014 Jul; 4():5657. PubMed ID: 25012259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial pathway for trans-4-hydroxy-L-pipecolic acid production from L-lysine in Escherichia coli.
    Cheng J; Luo Z; Wang B; Yan L; Zhang S; Zhang J; Lu Y; Wang W
    Biosci Biotechnol Biochem; 2022 Sep; 86(10):1476-1481. PubMed ID: 35998310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida.
    Muramatsu H; Mihara H; Yasuda M; Ueda M; Kurihara T; Esaki N
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2296-8. PubMed ID: 16960365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.