BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33064187)

  • 41. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multidimensional engineering of Escherichia coli for efficient biosynthesis of cis-3-hydroxypipecolic acid.
    Wang J; Wang Y; Wu Q; Zhang Y
    Bioresour Technol; 2023 Aug; 382():129173. PubMed ID: 37187331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The lysP gene encodes the lysine-specific permease.
    Steffes C; Ellis J; Wu J; Rosen BP
    J Bacteriol; 1992 May; 174(10):3242-9. PubMed ID: 1315732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneously Enhancing the Stability and Catalytic Activity of Multimeric Lysine Decarboxylase CadA by Engineering Interface Regions for Enzymatic Production of Cadaverine at High Concentration of Lysine.
    Hong EY; Lee SG; Park BJ; Lee JM; Yun H; Kim BG
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28843030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli.
    Zhang HL; Zhang C; Pei CH; Han MN; Xu ZD; Li CH; Li W
    Lett Appl Microbiol; 2018 May; 66(5):400-408. PubMed ID: 29432647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling the fermentation and membrane separation process for polyamides monomer cadaverine production from feedstock lysine.
    Luo R; Qin Z; Zhou D; Wang D; Hu G; Su Z; Zhang S
    Eng Life Sci; 2021 Oct; 21(10):623-629. PubMed ID: 34690633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor.
    Jang S; Jang S; Im DK; Kang TJ; Oh MK; Jung GY
    ACS Synth Biol; 2019 Jun; 8(6):1276-1283. PubMed ID: 31074964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.
    Rauschmeier M; Schüppel V; Tetsch L; Jung K
    J Mol Biol; 2014 Jan; 426(1):215-29. PubMed ID: 24056175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic Engineering for Effective Synthesis of 2-Hydroxyadipate.
    Liu M; He K; Bi H; Wang M; Chen B; Tan T; Zhang Y
    ACS Synth Biol; 2023 Aug; 12(8):2475-2486. PubMed ID: 37527188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.
    Ladkau N; Assmann M; Schrewe M; Julsing MK; Schmid A; Bühler B
    Metab Eng; 2016 Jul; 36():1-9. PubMed ID: 26969251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose.
    Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H
    BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene.
    Qi WW; Vannelli T; Breinig S; Ben-Bassat A; Gatenby AA; Haynie SL; Sariaslani FS
    Metab Eng; 2007 May; 9(3):268-76. PubMed ID: 17451990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum.
    Matsuura R; Kishida M; Konishi R; Hirata Y; Adachi N; Segawa S; Imao K; Tanaka T; Kondo A
    Biotechnol Bioeng; 2019 Oct; 116(10):2640-2651. PubMed ID: 31184369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.
    Wang J; Wu Y; Sun X; Yuan Q; Yan Y
    ACS Synth Biol; 2017 Oct; 6(10):1922-1930. PubMed ID: 28618222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slow photoelectron spectroscopy of δ-valerolactam and its dimer.
    Mahjoub A; Hochlaf M; Poisson L; Nieuwjaer N; Lecomte F; Schermann JP; Grégoire G; Manil B; Garcia GA; Nahon L
    Chemphyschem; 2011 Jul; 12(10):1822-32. PubMed ID: 21618379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of the initial steps in D-lysine catabolism in Pseudomonas putida.
    Revelles O; Wittich RM; Ramos JL
    J Bacteriol; 2007 Apr; 189(7):2787-92. PubMed ID: 17259313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering the production of dipicolinic acid in E. coli.
    McClintock MK; Fahnhorst GW; Hoye TR; Zhang K
    Metab Eng; 2018 Jul; 48():208-217. PubMed ID: 29792931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from
    Thompson MG; Pearson AN; Barajas JF; Cruz-Morales P; Sedaghatian N; Costello Z; Garber ME; Incha MR; Valencia LE; Baidoo EEK; Martin HG; Mukhopadhyay A; Keasling JD
    ACS Synth Biol; 2020 Jan; 9(1):53-62. PubMed ID: 31841635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.