These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33064217)
1. Intraseasonal variation of phycocyanin concentrations and environmental covariates in two agricultural irrigation ponds in Maryland, USA. Smith JE; Stocker MD; Wolny JL; Hill RL; Pachepsky YA Environ Monit Assess; 2020 Oct; 192(11):706. PubMed ID: 33064217 [TBL] [Abstract][Full Text] [Related]
2. Intraseasonal variation of E. coli and environmental covariates in two irrigation ponds in Maryland, USA. Stocker MD; Pachepsky YA; Hill RL; Sellner KG; Macarisin D; Staver KW Sci Total Environ; 2019 Jun; 670():732-740. PubMed ID: 30909049 [TBL] [Abstract][Full Text] [Related]
3. Temporal Stability of Escherichia coli Concentrations in Waters of Two Irrigation Ponds in Maryland. Pachepsky Y; Kierzewski R; Stocker M; Sellner K; Mulbry W; Lee H; Kim M Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150504 [TBL] [Abstract][Full Text] [Related]
4. Drone-based imaging to assess the microbial water quality in an irrigation pond: A pilot study. Morgan BJ; Stocker MD; Valdes-Abellan J; Kim MS; Pachepsky Y Sci Total Environ; 2020 May; 716():135757. PubMed ID: 31837850 [TBL] [Abstract][Full Text] [Related]
5. Intra-daily variation of Escherichia coli concentrations in agricultural irrigation ponds. Stocker MD; Smith JE; Hill RL; Pachepsky YA J Environ Qual; 2022 Jul; 51(4):719-730. PubMed ID: 35419843 [TBL] [Abstract][Full Text] [Related]
6. An investigation of cyanobacteria, cyanotoxins and environmental variables in selected drinking water treatment plants in New Jersey. Hsu TD; Acosta Caraballo Y; Wu M Heliyon; 2024 Jun; 10(11):e31350. PubMed ID: 38828292 [TBL] [Abstract][Full Text] [Related]
7. Hydrophysical and Hydrochemical Controls of Cyanobacterial Blooms in Coursey Pond, Delaware (USA). Andres AS; Main CR; Pettay DT; Ullman WJ J Environ Qual; 2019 Jan; 48(1):73-82. PubMed ID: 30640342 [TBL] [Abstract][Full Text] [Related]
8. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Bowling LC; Zamyadi A; Henderson RK Water Res; 2016 Nov; 105():22-33. PubMed ID: 27592302 [TBL] [Abstract][Full Text] [Related]
9. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds. Wilson AE; Chislock MF; Yang Z; Barros MUG; Roberts JF Environ Monit Assess; 2018 Mar; 190(4):247. PubMed ID: 29574498 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Zamyadi A; McQuaid N; Prévost M; Dorner S J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157 [TBL] [Abstract][Full Text] [Related]
11. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing. Gorham T; Jia Y; Shum CK; Lee J Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249 [TBL] [Abstract][Full Text] [Related]
12. Fine-scale spatiotemporal variations in bacterial community diversity in agricultural pond water. Stocker MD; Smith JE; Pachepsky YA; Blaustein RA Sci Total Environ; 2024 Mar; 915():170143. PubMed ID: 38242477 [TBL] [Abstract][Full Text] [Related]
14. Harmful Algae Bloom Occurrence in Urban Ponds: Relationship of Toxin Levels with Cell Density and Species Composition. de la Cruz A; Logsdon R; Lye D; Guglielmi S; Rice A; Kannan MS J Earth Environ Sci; 2017; 25():704-726. PubMed ID: 31750421 [TBL] [Abstract][Full Text] [Related]
15. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Park Y; Pyo J; Kwon YS; Cha Y; Lee H; Kang T; Cho KH Water Res; 2017 Dec; 126():319-328. PubMed ID: 28965034 [TBL] [Abstract][Full Text] [Related]
16. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes. Bowling LC; Shaikh M; Brayan J; Malthus T Environ Monit Assess; 2017 Sep; 189(10):495. PubMed ID: 28887739 [TBL] [Abstract][Full Text] [Related]
17. Using machine learning models to estimate Escherichia coli concentration in an irrigation pond from water quality and drone-based RGB imagery data. Hong SM; Morgan BJ; Stocker MD; Smith JE; Kim MS; Cho KH; Pachepsky YA Water Res; 2024 Aug; 260():121861. PubMed ID: 38875854 [TBL] [Abstract][Full Text] [Related]
18. Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models. Hong SM; Baek SS; Yun D; Kwon YH; Duan H; Pyo J; Cho KH Sci Total Environ; 2021 Nov; 794():148592. PubMed ID: 34217087 [TBL] [Abstract][Full Text] [Related]
19. A suggested climate service for cyanobacteria blooms in the Baltic Sea - Comparing three monitoring methods. Karlson B; Arneborg L; Johansson J; Linders J; Liu Y; Olofsson M Harmful Algae; 2022 Oct; 118():102291. PubMed ID: 36195413 [TBL] [Abstract][Full Text] [Related]