These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33064217)
21. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase. Rousso BZ; Bertone E; Stewart R; Aguiar A; Chuang A; Hamilton DP; Burford MA Water Res; 2022 Apr; 212():118127. PubMed ID: 35121420 [TBL] [Abstract][Full Text] [Related]
22. Machine learning for anomaly detection in cyanobacterial fluorescence signals. Almuhtaram H; Zamyadi A; Hofmann R Water Res; 2021 Jun; 197():117073. PubMed ID: 33784609 [TBL] [Abstract][Full Text] [Related]
23. Influence of alum on cyanobacterial blooms and water quality of earthen fish ponds. Dawah A; Soliman A; Abomohra Ael-F; Battah M; Anees D Environ Sci Pollut Res Int; 2015 Nov; 22(21):16502-13. PubMed ID: 26054461 [TBL] [Abstract][Full Text] [Related]
24. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Paerl HW; Fulton RS; Moisander PH; Dyble J ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693 [TBL] [Abstract][Full Text] [Related]
25. Characterization of blooming algae and bloom-associated changes in the water quality parameters of traditional pokkali cum prawn fields along the South West coast of India. Ajin AM; Silvester R; Alexander D; M N; Abdulla MH Environ Monit Assess; 2016 Mar; 188(3):145. PubMed ID: 26850711 [TBL] [Abstract][Full Text] [Related]
26. Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies. Mrdjen I; Fennessy S; Schaal A; Dennis R; Slonczewski JL; Lee S; Lee J Environ Sci Technol; 2018 Aug; 52(15):8215-8223. PubMed ID: 29952549 [TBL] [Abstract][Full Text] [Related]
27. Temporal and Environmental Factors Driving Greenfield DI; Gooch Moore J; Stewart JR; Hilborn ED; George BJ; Li Q; Dickerson J; Keppler CK; Sandifer PA Geohealth; 2017 Nov; 1(9):306-317. PubMed ID: 32158995 [TBL] [Abstract][Full Text] [Related]
28. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Hodges CM; Wood SA; Puddick J; McBride CG; Hamilton DP Environ Sci Pollut Res Int; 2018 Jan; 25(2):1079-1088. PubMed ID: 29079975 [TBL] [Abstract][Full Text] [Related]
29. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617 [TBL] [Abstract][Full Text] [Related]
30. Classification machine learning to detect de facto reuse and cyanobacteria at a drinking water intake. Clements E; Thompson KA; Hannoun D; Dickenson ERV Sci Total Environ; 2024 Oct; 948():174690. PubMed ID: 38992351 [TBL] [Abstract][Full Text] [Related]
31. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio. Francy DS; Brady AM; Ecker CD; Graham JL; Stelzer EA; Struffolino P; Dwyer DF; Loftin KA Harmful Algae; 2016 Sep; 58():23-34. PubMed ID: 28073455 [TBL] [Abstract][Full Text] [Related]
32. Measurement of cyanobacteria using in-vivo fluoroscopy -- effect of cyanobacterial species, pigments, and colonies. Chang DW; Hobson P; Burch M; Lin TF Water Res; 2012 Oct; 46(16):5037-48. PubMed ID: 22824675 [TBL] [Abstract][Full Text] [Related]
33. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related]
34. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Brient L; Lengronne M; Bertrand E; Rolland D; Sipel A; Steinmann D; Baudin I; Legeas M; Le Rouzic B; Bormans M J Environ Monit; 2008 Feb; 10(2):248-55. PubMed ID: 18246219 [TBL] [Abstract][Full Text] [Related]
35. [Wind Field Influences on the Spatial Distribution of Cyanobacterial Blooms and Nutrients in Meiliang Bay of Lake Taihu, China]. Yu ML; Hong GX; Zhu GW; Quan QM; Xu H; Zhu MY; Ding WH; Li W; Wu TF Huan Jing Ke Xue; 2019 Aug; 40(8):3519-3529. PubMed ID: 31854757 [TBL] [Abstract][Full Text] [Related]
36. Two machine learning approaches for predicting cyanobacteria abundance in aquaculture ponds. Zhang M; Zhang Y; Yu S; Gao Y; Dong J; Zhu W; Wang X; Li X; Li J; Xiong J Ecotoxicol Environ Saf; 2023 Jun; 258():114944. PubMed ID: 37119728 [TBL] [Abstract][Full Text] [Related]
37. Prediction of Stocker MD; Pachepsky YA; Hill RL Front Artif Intell; 2021; 4():768650. PubMed ID: 35088045 [TBL] [Abstract][Full Text] [Related]
38. Efficacy of algaecides for the proactive treatment of overwintering cyanobacteria. Calomeni A; McQueen A; Kinley-Baird C; Clyde G; Gusler G; Boyer M; Smith EF Ecotoxicol Environ Saf; 2023 Jun; 262():115187. PubMed ID: 37385019 [TBL] [Abstract][Full Text] [Related]
39. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake. Li H; Alsanea A; Barber M; Goel R Sci Total Environ; 2019 Apr; 661():465-480. PubMed ID: 30677691 [TBL] [Abstract][Full Text] [Related]
40. Fresh produce and their soils accumulate cyanotoxins from irrigation water: Implications for public health and food security. Lee S; Jiang X; Manubolu M; Riedl K; Ludsin SA; Martin JF; Lee J Food Res Int; 2017 Dec; 102():234-245. PubMed ID: 29195944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]