These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 33064463)
21. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Birbarah P; Li Z; Pauls A; Miljkovic N Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977 [TBL] [Abstract][Full Text] [Related]
22. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Xiao R; Miljkovic N; Enright R; Wang EN Sci Rep; 2013; 3():1988. PubMed ID: 23759735 [TBL] [Abstract][Full Text] [Related]
23. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces. Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353 [TBL] [Abstract][Full Text] [Related]
24. Dewetting from Amphiphilic Minichannel Surfaces during Condensation. Winter RL; McCarthy M ACS Appl Mater Interfaces; 2020 Feb; 12(6):7815-7825. PubMed ID: 31944655 [TBL] [Abstract][Full Text] [Related]
25. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. Wang X; Xu B; Chen Z; Yang Y; Cao Q Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253 [TBL] [Abstract][Full Text] [Related]
26. Smart Control for Water Droplets on Temperature and Force Dual-Responsive Slippery Surfaces. Wu S; Liu L; Zhu S; Xiao Y Langmuir; 2021 Jan; 37(1):578-584. PubMed ID: 33369422 [TBL] [Abstract][Full Text] [Related]
28. Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Sadullah MS; Panter JR; Kusumaatmaja H Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997 [TBL] [Abstract][Full Text] [Related]
29. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces. Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158 [TBL] [Abstract][Full Text] [Related]
30. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor. Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794 [TBL] [Abstract][Full Text] [Related]
31. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055 [TBL] [Abstract][Full Text] [Related]
32. Dropwise condensation on solid hydrophilic surfaces. Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076 [TBL] [Abstract][Full Text] [Related]
33. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets. Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727 [TBL] [Abstract][Full Text] [Related]
34. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface. Thomas TM; Sinha Mahapatra P Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651 [TBL] [Abstract][Full Text] [Related]
35. Design of Metal-Based Slippery Liquid-Infused Porous Surfaces (SLIPSs) with Effective Liquid Repellency Achieved with a Femtosecond Laser. Fang Z; Cheng Y; Yang Q; Lu Y; Zhang C; Li M; Du B; Hou X; Chen F Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893158 [TBL] [Abstract][Full Text] [Related]
36. Enhanced Jumping-Droplet Departure. Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384 [TBL] [Abstract][Full Text] [Related]
37. Slippery Wenzel State. Dai X; Stogin BB; Yang S; Wong TS ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154 [TBL] [Abstract][Full Text] [Related]
38. Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance. Liu C; Li Y; Lu C; Liu Y; Feng S; Liu Y ACS Appl Mater Interfaces; 2020 Jun; 12(22):25471-25477. PubMed ID: 32379411 [TBL] [Abstract][Full Text] [Related]
39. Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing. Han G; Nguyen TB; Park S; Jung Y; Lee J; Lim H ACS Nano; 2020 Aug; 14(8):10198-10209. PubMed ID: 32700892 [TBL] [Abstract][Full Text] [Related]