These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. R-type bacteriocins in related strains of Xenorhabdus bovienii: Xenorhabdicin tail fiber modularity and contribution to competitiveness. Ciezki K; Murfin K; Goodrich-Blair H; Stock SP; Forst S FEMS Microbiol Lett; 2017 Jan; 364(1):. PubMed ID: 27737947 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. Morales-Soto N; Gaudriault S; Ogier JC; Thappeta KR; Forst S FEMS Microbiol Lett; 2012 Aug; 333(1):69-76. PubMed ID: 22612724 [TBL] [Abstract][Full Text] [Related]
4. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. Ciezki K; Wesener S; Jaber D; Mirza S; Forst S Microbiology (Reading); 2019 May; 165(5):538-553. PubMed ID: 30938671 [TBL] [Abstract][Full Text] [Related]
5. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. Morales-Soto N; Forst SA J Bacteriol; 2011 Jul; 193(14):3624-32. PubMed ID: 21602326 [TBL] [Abstract][Full Text] [Related]
6. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609 [TBL] [Abstract][Full Text] [Related]
7. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Bisch G; Ogier JC; Médigue C; Rouy Z; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2016 Jan; 8(1):148-60. PubMed ID: 26769959 [TBL] [Abstract][Full Text] [Related]
8. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex. Dreyer J; Rautenbach M; Booysen E; van Staden AD; Deane SM; Dicks LMT BMC Microbiol; 2019 Jun; 19(1):132. PubMed ID: 31195965 [TBL] [Abstract][Full Text] [Related]
9. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Sugar DR; Murfin KE; Chaston JM; Andersen AW; Richards GR; deLéon L; Baum JA; Clinton WP; Forst S; Goldman BS; Krasomil-Osterfeld KC; Slater S; Stock SP; Goodrich-Blair H Environ Microbiol; 2012 Apr; 14(4):924-39. PubMed ID: 22151385 [TBL] [Abstract][Full Text] [Related]
11. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Murfin KE; Ginete DR; Bashey F; Goodrich-Blair H Environ Microbiol; 2018 May; ():. PubMed ID: 29799156 [TBL] [Abstract][Full Text] [Related]
12. Spiteful Interactions in a natural population of the bacterium Xenorhabdus bovienii. Hawlena H; Bashey F; Mendes-Soares H; Lively CM Am Nat; 2010 Mar; 175(3):374-81. PubMed ID: 20095826 [TBL] [Abstract][Full Text] [Related]
13. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. McMullen JG; McQuade R; Ogier JC; Pagès S; Gaudriault S; Patricia Stock S Microbiology (Reading); 2017 Apr; 163(4):510-522. PubMed ID: 28430102 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the pixB gene in Xenorhabdus nematophila and discovery of a new gene family. Lucas J; Goetsch M; Fischer M; Forst S Microbiology (Reading); 2018 Apr; 164(4):495-508. PubMed ID: 29498622 [TBL] [Abstract][Full Text] [Related]
15. Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. Bashey F; Young SK; Hawlena H; Lively CM J Evol Biol; 2012 Mar; 25(3):431-7. PubMed ID: 22221661 [TBL] [Abstract][Full Text] [Related]
16. Type 6 secretion system components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. Pothula R; Lee MW; Patricia Stock S J Invertebr Pathol; 2023 Jun; 198():107925. PubMed ID: 37087093 [TBL] [Abstract][Full Text] [Related]
18. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). Sicard M; Hinsinger J; Le Brun N; Pages S; Boemare N; Moulia C BMC Evol Biol; 2006 Sep; 6():68. PubMed ID: 16953880 [TBL] [Abstract][Full Text] [Related]
19. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Thaler JO; Baghdiguian S; Boemare N Appl Environ Microbiol; 1995 May; 61(5):2049-52. PubMed ID: 7646048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]