These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33064635)

  • 21. Host Association and Spatial Proximity Shape but Do Not Constrain Population Structure in the Mutualistic Symbiont Xenorhabdus bovienii.
    Papudeshi B; Rusch DB; VanInsberghe D; Lively CM; Edwards RA; Bashey F
    mBio; 2023 Jun; 14(3):e0043423. PubMed ID: 37154562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic characterization of the Xenorhabdus bacterial symbiont of a Texas strain of the entomopathogenic nematode Steinernema riobrave, and characterization of the Xenorhabdus bovienii bacterial symbiont of a Newfoundland strain of Steinernema feltiae.
    He H; Gordon R; Gow JA
    Can J Microbiol; 2000 Jul; 46(7):618-22. PubMed ID: 10932355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila.
    Forst S; Boylan B
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):43-9. PubMed ID: 12448704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interference competition and parasite virulence.
    Massey RC; Buckling A; ffrench-Constant R
    Proc Biol Sci; 2004 Apr; 271(1541):785-8. PubMed ID: 15255095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions.
    Murfin KE; Whooley AC; Klassen JL; Goodrich-Blair H
    BMC Genomics; 2015 Nov; 16():889. PubMed ID: 26525894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae.
    Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C
    Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of novel prophage regions in
    Lefoulon E; Campbell N; Stock SP
    PeerJ; 2022; 10():e12956. PubMed ID: 35186508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila.
    Herbert EE; Cowles KN; Goodrich-Blair H
    Appl Environ Microbiol; 2007 Dec; 73(24):7826-36. PubMed ID: 17951441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes.
    Roder AC; Stock SP
    J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host.
    Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546
    [No Abstract]   [Full Text] [Related]  

  • 33. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii.
    Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A
    Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii.
    Ogier JC; Pagès S; Bisch G; Chiapello H; Médigue C; Rouy Z; Teyssier C; Vincent S; Tailliez P; Givaudan A; Gaudriault S
    Genome Biol Evol; 2014 Jun; 6(6):1495-513. PubMed ID: 24904010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manifold aspects of specificity in a nematode-bacterium mutualism.
    Chapuis E; Emelianoff V; Paulmier V; Le Brun N; Pagès S; Sicard M; Ferdy JB
    J Evol Biol; 2009 Oct; 22(10):2104-17. PubMed ID: 19732258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.
    Lengyel K; Lang E; Fodor A; Szállás E; Schumann P; Stackebrandt E
    Syst Appl Microbiol; 2005 Mar; 28(2):115-22. PubMed ID: 15830803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Global Transcription Factor Lrp Is both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity.
    Casanova-Torres ÁM; Shokal U; Morag N; Eleftherianos I; Goodrich-Blair H
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination.
    Goodrich-Blair H; Clarke DJ
    Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific.
    Lanois-Nouri A; Pantel L; Fu J; Houard J; Ogier JC; Polikanov YS; Racine E; Wang H; Gaudriault S; Givaudan A; Gualtieri M
    mBio; 2022 Feb; 13(1):e0282621. PubMed ID: 35012352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.