These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33064719)

  • 1. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis.
    Liu XB; Xia EH; Li M; Cui YY; Wang PM; Zhang JX; Xie BG; Xu JP; Yan JJ; Li J; Nagy LG; Yang ZL
    PLoS One; 2020; 15(10):e0239890. PubMed ID: 33064719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi.
    Krizsán K; Almási É; Merényi Z; Sahu N; Virágh M; Kószó T; Mondo S; Kiss B; Bálint B; Kües U; Barry K; Cseklye J; Hegedüs B; Henrissat B; Johnson J; Lipzen A; Ohm RA; Nagy I; Pangilinan J; Yan J; Xiong Y; Grigoriev IV; Hibbett DS; Nagy LG
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7409-7418. PubMed ID: 30902897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and expression pattern analysis of pheromone receptor-like genes in Winter Mushroom Flammulina filiformis.
    Meng L; Chou T; Jiang S; Wang L; Zhu M; Mukhtar I; Xie B; Wang W
    Arch Microbiol; 2020 Dec; 202(10):2671-2678. PubMed ID: 32719947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes).
    Földi C; Merényi Z; Balázs B; Csernetics Á; Miklovics N; Wu H; Hegedüs B; Virágh M; Hou Z; Liu X-B; Galgóczy L; Nagy LG
    mSystems; 2024 Mar; 9(3):e0120823. PubMed ID: 38334416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes).
    Merényi Z; Virágh M; Gluck-Thaler E; Slot JC; Kiss B; Varga T; Geösel A; Hegedüs B; Bálint B; Nagy LG
    Elife; 2022 Feb; 11():. PubMed ID: 35156613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis.
    Orban A; Weber A; Herzog R; Hennicke F; Rühl M
    BMC Genomics; 2021 May; 22(1):324. PubMed ID: 33947322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display.
    Yamada M; Sakuraba S; Shibata K; Taguchi G; Inatomi S; Okazaki M; Shimosaka M
    FEMS Microbiol Lett; 2006 Jan; 254(1):165-72. PubMed ID: 16451195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea.
    Cheng CK; Au CH; Wilke SK; Stajich JE; Zolan ME; Pukkila PJ; Kwan HS
    BMC Genomics; 2013 Mar; 14():195. PubMed ID: 23514374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Proteome Reveals Metabolic Changes during the Fruiting Process in Flammulina velutipes.
    Liu JY; Chang MC; Meng JL; Feng CP; Zhao H; Zhang ML
    J Agric Food Chem; 2017 Jun; 65(24):5091-5100. PubMed ID: 28570075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis.
    Tao Y; Chen R; Yan J; Long Y; Tong Z; Song H; Xie B
    Gene; 2019 Jul; 706():84-90. PubMed ID: 31028867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptomics of
    Yan JJ; Tong ZJ; Liu YY; Li YN; Zhao C; Mukhtar I; Tao YX; Chen BZ; Deng YJ; Xie BG
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom.
    Wu T; Hu C; Xie B; Wei S; Zhang L; Zhu Z; Zhang Z; Li S
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):5827-5844. PubMed ID: 32356196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis and prediction of genes involved in the biosynthesis of polysaccharides and bioactive secondary metabolites in high-temperature-tolerant wild Flammulina filiformis.
    Chen J; Li JM; Tang YJ; Ma K; Li B; Zeng X; Liu XB; Li Y; Yang ZL; Xu WN; Xie BG; Liu HW; Guo SX
    BMC Genomics; 2020 Oct; 21(1):719. PubMed ID: 33069230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.
    Almási É; Sahu N; Krizsán K; Bálint B; Kovács GM; Kiss B; Cseklye J; Drula E; Henrissat B; Nagy I; Chovatia M; Adam C; LaButti K; Lipzen A; Riley R; Grigoriev IV; Nagy LG
    New Phytol; 2019 Oct; 224(2):902-915. PubMed ID: 31257601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.
    Gupta DK; Rühl M; Mishra B; Kleofas V; Hofrichter M; Herzog R; Pecyna MJ; Sharma R; Kellner H; Hennicke F; Thines M
    BMC Genomics; 2018 Jan; 19(1):48. PubMed ID: 29334897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes.
    Li X; Wang F; Liu Q; Li Q; Qian Z; Zhang X; Li K; Li W; Dong C
    BMC Genomics; 2019 May; 20(1):337. PubMed ID: 31054562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates.
    Zhao Y; Yao Y; Li H; Han Z; Ma X
    BMC Genomics; 2024 Aug; 25(1):763. PubMed ID: 39107700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola.
    Largeteau ML; Latapy C; Minvielle N; Regnault-Roger C; Savoie JM
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1499-507. PubMed ID: 19711071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain.
    Xie Y; Chang J; Kwan HS
    Fungal Genet Biol; 2020 Oct; 143():103432. PubMed ID: 32681999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus.
    Zhang J; Ren A; Chen H; Zhao M; Shi L; Chen M; Wang H; Feng Z
    PLoS One; 2015; 10(4):e0123025. PubMed ID: 25837428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.