BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33065111)

  • 1. Enzymatic Hydroxylation and Excision of Extended 5-Methylcytosine Analogues.
    Tomkuvienė M; Ikasalaitė D; Slyvka A; Rukšėnaitė A; Ravichandran M; Jurkowski TP; Bochtler M; Klimašauskas S
    J Mol Biol; 2020 Nov; 432(23):6157-6167. PubMed ID: 33065111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites.
    DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM
    J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism.
    Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P
    Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development.
    Nettersheim D; Heukamp LC; Fronhoffs F; Grewe MJ; Haas N; Waha A; Honecker F; Waha A; Kristiansen G; Schorle H
    PLoS One; 2013; 8(12):e82881. PubMed ID: 24386123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine.
    Minor EA; Court BL; Young JI; Wang G
    J Biol Chem; 2013 May; 288(19):13669-74. PubMed ID: 23548903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases.
    Bhattacharya C; Dey AS; Mukherji M
    Cell Biochem Funct; 2023 Aug; 41(6):704-712. PubMed ID: 37349892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling.
    Dai HQ; Wang BA; Yang L; Chen JJ; Zhu GC; Sun ML; Ge H; Wang R; Chapman DL; Tang F; Sun X; Xu GL
    Nature; 2016 Oct; 538(7626):528-532. PubMed ID: 27760115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TET enzymes, TDG and the dynamics of DNA demethylation.
    Kohli RM; Zhang Y
    Nature; 2013 Oct; 502(7472):472-9. PubMed ID: 24153300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
    Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC
    Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Oxidized 5-Methylcytosine Bases and TET Enzyme Activity.
    Liu MY; DeNizio JE; Kohli RM
    Methods Enzymol; 2016; 573():365-85. PubMed ID: 27372762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis.
    Mahfoudhi E; Talhaoui I; Cabagnols X; Della Valle V; Secardin L; Rameau P; Bernard OA; Ishchenko AA; Abbes S; Vainchenker W; Saparbaev M; Plo I
    DNA Repair (Amst); 2016 Jul; 43():78-88. PubMed ID: 27289557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.
    Guo JU; Su Y; Zhong C; Ming GL; Song H
    Cell; 2011 Apr; 145(3):423-34. PubMed ID: 21496894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active DNA demethylation by DNA repair: Facts and uncertainties.
    Schuermann D; Weber AR; Schär P
    DNA Repair (Amst); 2016 Aug; 44():92-102. PubMed ID: 27247237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation.
    Müller U; Bauer C; Siegl M; Rottach A; Leonhardt H
    Nucleic Acids Res; 2014 Jul; 42(13):8592-604. PubMed ID: 24948610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations.
    Hashimoto H; Zhang X; Vertino PM; Cheng X
    J Biol Chem; 2015 Aug; 290(34):20723-20733. PubMed ID: 26152719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a.
    Zhang P; Huang B; Xu X; Sessa WC
    Biochem Biophys Res Commun; 2013 Aug; 437(3):368-73. PubMed ID: 23820384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.