BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33065111)

  • 21. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.
    Maiti A; Drohat AC
    J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation.
    Schomacher L; Han D; Musheev MU; Arab K; Kienhöfer S; von Seggern A; Niehrs C
    Nat Struct Mol Biol; 2016 Feb; 23(2):116-124. PubMed ID: 26751644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision.
    Slyvka A; Mierzejewska K; Bochtler M
    Sci Rep; 2017 Aug; 7(1):9001. PubMed ID: 28827588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA repair and erasure of 5-methylcytosine in vertebrates.
    Schomacher L; Niehrs C
    Bioessays; 2017 Mar; 39(3):. PubMed ID: 28098352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA demethylation pathways: Additional players and regulators.
    Bochtler M; Kolano A; Xu GL
    Bioessays; 2017 Jan; 39(1):1-13. PubMed ID: 27859411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mechanistic overview of TET-mediated 5-methylcytosine oxidation.
    Ponnaluri VK; Maciejewski JP; Mukherji M
    Biochem Biophys Res Commun; 2013 Jun; 436(2):115-20. PubMed ID: 23727577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular biology. Demystifying DNA demethylation.
    Nabel CS; Kohli RM
    Science; 2011 Sep; 333(6047):1229-30. PubMed ID: 21885763
    [No Abstract]   [Full Text] [Related]  

  • 29. GADD45a physically and functionally interacts with TET1.
    Kienhöfer S; Musheev MU; Stapf U; Helm M; Schomacher L; Niehrs C; Schäfer A
    Differentiation; 2015; 90(1-3):59-68. PubMed ID: 26546041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases.
    Morales-Ruiz T; Ortega-Galisteo AP; Ponferrada-Marín MI; Martínez-Macías MI; Ariza RR; Roldán-Arjona T
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6853-8. PubMed ID: 16624880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic DNA oxidation: mechanisms and biological significance.
    Xu GL; Walsh CP
    BMB Rep; 2014 Nov; 47(11):609-18. PubMed ID: 25341925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phage-encoded ten-eleven translocation dioxygenase (TET) is active in C5-cytosine hypermodification in DNA.
    Burke EJ; Rodda SS; Lund SR; Sun Z; Zeroka MR; O'Toole KH; Parker MJ; Doshi DS; Guan C; Lee YJ; Dai N; Hough DM; Shnider DA; Corrêa IR; Weigele PR; Saleh L
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation.
    Yang H; Liu Y; Bai F; Zhang JY; Ma SH; Liu J; Xu ZD; Zhu HG; Ling ZQ; Ye D; Guan KL; Xiong Y
    Oncogene; 2013 Jan; 32(5):663-9. PubMed ID: 22391558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients: Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation.
    Spallotta F; Cencioni C; Atlante S; Garella D; Cocco M; Mori M; Mastrocola R; Kuenne C; Guenther S; Nanni S; Azzimato V; Zukunft S; Kornberger A; Sürün D; Schnütgen F; von Melchner H; Di Stilo A; Aragno M; Braspenning M; van Criekinge W; De Blasio MJ; Ritchie RH; Zaccagnini G; Martelli F; Farsetti A; Fleming I; Braun T; Beiras-Fernandez A; Botta B; Collino M; Bertinaria M; Zeiher AM; Gaetano C
    Circ Res; 2018 Jan; 122(1):31-46. PubMed ID: 29158345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TET methylcytosine oxidases: new insights from a decade of research.
    Lio CJ; Yue X; Lopez-Moyado IF; Tahiliani M; Aravind L; Rao A
    J Biosci; 2020; 45():. PubMed ID: 31965999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development.
    Tu J; Liao J; Luk AC; Tang NL; Chan WY; Lee TL
    Int J Biochem Cell Biol; 2015 Oct; 67():115-20. PubMed ID: 25979370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TET-mediated active DNA demethylation: mechanism, function and beyond.
    Wu X; Zhang Y
    Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct observation and analysis of TET-mediated oxidation processes in a DNA origami nanochip.
    Xing X; Sato S; Wong NK; Hidaka K; Sugiyama H; Endo M
    Nucleic Acids Res; 2020 May; 48(8):4041-4051. PubMed ID: 32170318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine.
    Pais JE; Dai N; Tamanaha E; Vaisvila R; Fomenkov AI; Bitinaite J; Sun Z; Guan S; Corrêa IR; Noren CJ; Cheng X; Roberts RJ; Zheng Y; Saleh L
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4316-21. PubMed ID: 25831492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.