These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 33065269)

  • 1. Unraveling the 3D Genome Architecture in Plants: Present and Future.
    Ouyang W; Xiong D; Li G; Li X
    Mol Plant; 2020 Dec; 13(12):1676-1693. PubMed ID: 33065269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control.
    Wang N; Liu C
    Curr Opin Genet Dev; 2019 Apr; 55():59-65. PubMed ID: 31306885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant 3D genomics: the exploration and application of chromatin organization.
    Pei L; Li G; Lindsey K; Zhang X; Wang M
    New Phytol; 2021 Jun; 230(5):1772-1786. PubMed ID: 33560539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the plant genome: From epigenome to 3D organization.
    Ouyang W; Cao Z; Xiong D; Li G; Li X
    J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two main stream methods analysis and visual 3D genome architecture.
    Fu S; Zhang L; Lv J; Zhu B; Wang W; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():43-53. PubMed ID: 30059749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Hi-C Library Preparation for Plants to Study Their Three-Dimensional Chromatin Interactions on a Genome-Wide Scale.
    Liu C
    Methods Mol Biol; 2017; 1629():155-166. PubMed ID: 28623585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Put your 3D glasses on: plant chromatin is on show.
    Rodriguez-Granados NY; Ramirez-Prado JS; Veluchamy A; Latrasse D; Raynaud C; Crespi M; Ariel F; Benhamed M
    J Exp Bot; 2016 May; 67(11):3205-21. PubMed ID: 27129951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture.
    Grob S; Cavalli G
    Methods Mol Biol; 2018; 1675():233-246. PubMed ID: 29052195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hi-C techniques: from genome assemblies to transcription regulation.
    Šimková H; Câmara AS; Mascher M
    J Exp Bot; 2024 Sep; 75(17):5357-5365. PubMed ID: 38430521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex chromatin interactions with single-molecule precision.
    Zheng M; Tian SZ; Capurso D; Kim M; Maurya R; Lee B; Piecuch E; Gong L; Zhu JJ; Li Z; Wong CH; Ngan CY; Wang P; Ruan X; Wei CL; Ruan Y
    Nature; 2019 Feb; 566(7745):558-562. PubMed ID: 30778195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in three-dimensional genomics].
    Zhang F; Shen Z; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2791-2812. PubMed ID: 33398973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the 3D genome of human malaria parasites.
    Batugedara G; Le Roch KG
    Semin Cell Dev Biol; 2019 Jun; 90():144-153. PubMed ID: 30009946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation.
    Zhao L; Wang S; Cao Z; Ouyang W; Zhang Q; Xie L; Zheng R; Guo M; Ma M; Hu Z; Sung WK; Zhang Q; Li G; Li X
    Nat Commun; 2019 Aug; 10(1):3640. PubMed ID: 31409785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrogating Global Chromatin Interaction Network by High-Throughput Chromosome Conformation Capture (Hi-C) in Plants.
    Wang W; Niu L; Hou C
    Methods Mol Biol; 2022; 2484():55-67. PubMed ID: 35461444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional chromatin packing and positioning of plant genomes.
    Doğan ES; Liu C
    Nat Plants; 2018 Aug; 4(8):521-529. PubMed ID: 30061747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.