BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33065336)

  • 1. Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue.
    Li C; Xie S; You F; Zhu X; Li J; Xu X; Yu G; Wang Y; Angelidaki I
    Waste Manag; 2021 Jan; 119():152-161. PubMed ID: 33065336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-pyrolysis of sewage sludge/cotton stalks with K
    Wang Z; Tian Q; Guo J; Wu R; Zhu H; Zhang H
    Waste Manag; 2021 Nov; 135():199-207. PubMed ID: 34520992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure.
    Li C; Xie S; Wang Y; Pan X; Yu G; Zhang Y
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30323-30332. PubMed ID: 32458305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge.
    Wang X; Chi Q; Liu X; Wang Y
    Chemosphere; 2019 Feb; 216():698-706. PubMed ID: 30391891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge.
    Xiong Q; Wu X; Lv H; Liu S; Hou H; Wu X
    Chemosphere; 2021 Oct; 280():130566. PubMed ID: 33932904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of antibiotic mycelial residue for biochar: Kinetic deconvolution, biochar properties, and heavy metal immobilization.
    Xie S; Wang Y; Ma C; Zhu G; Wang Y; Li C
    J Environ Manage; 2023 Feb; 328():116956. PubMed ID: 36502709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge.
    Yang YQ; Cui MH; Ren YG; Guo JC; Zheng ZY; Liu H
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):489-496. PubMed ID: 32047949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate.
    Liu L; Huang L; Huang R; Lin H; Wang D
    J Hazard Mater; 2021 Feb; 403():123648. PubMed ID: 32835990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility.
    Zhang J; Jin J; Wang M; Naidu R; Liu Y; Man YB; Liang X; Wong MH; Christie P; Zhang Y; Song C; Shan S
    Environ Res; 2020 Dec; 191():110034. PubMed ID: 32827522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining impregnation and co-pyrolysis to reduce the environmental risk of biochar derived from sewage sludge.
    Min X; Ge T; Li H; Shi Y; Fang T; Sheng B; Li H; Dong X
    Chemosphere; 2022 Mar; 290():133371. PubMed ID: 34952014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-pyrolysis of sewage sludge and Ca(H
    Gu W; Guo J; Bai J; Dong B; Hu J; Zhuang X; Zhang C; Shih K
    J Environ Manage; 2022 Mar; 305():114292. PubMed ID: 34998065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals.
    Wang X; Chang VW; Li Z; Chen Z; Wang Y
    J Hazard Mater; 2021 Jun; 412():125200. PubMed ID: 33517061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.
    Devi P; Saroha AK
    Bioresour Technol; 2014 Jun; 162():308-15. PubMed ID: 24762760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals.
    Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S
    Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-pyrolysis of sewage sludge as additive with phytoremediation residue on the fate of heavy metals and the carbon sequestration potential of derived biochar.
    He T; Zhang M; Jin B
    Chemosphere; 2023 Feb; 314():137646. PubMed ID: 36581119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.
    Jin J; Li Y; Zhang J; Wu S; Cao Y; Liang P; Zhang J; Wong MH; Wang M; Shan S; Christie P
    J Hazard Mater; 2016 Dec; 320():417-426. PubMed ID: 27585274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge.
    Chen T; Zhang Y; Wang H; Lu W; Zhou Z; Zhang Y; Ren L
    Bioresour Technol; 2014 Jul; 164():47-54. PubMed ID: 24835918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals.
    Gbouri I; Yu F; Wang X; Wang J; Cui X; Hu Y; Yan B; Chen G
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.