BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33066044)

  • 1. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations.
    Nguyen PTV; Huynh HA; Truong DV; Tran TD; Vo CT
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors.
    Sridhar SNC; Palawat S; Paul AT
    Bioorg Chem; 2019 Apr; 85():373-381. PubMed ID: 30658237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Synthesis, Molecular Modelling and in Vitro Evaluation of Indolyl Ketohydrazide-Hydrazone Analogs as Potential Pancreatic Lipase Inhibitors.
    Jagetiya S; Auti PS; Paul AT
    Chem Biodivers; 2023 Sep; 20(9):e202301154. PubMed ID: 37611116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach.
    Ahmed B; Ali Ashfaq U; Usman Mirza M
    Nat Prod Res; 2018 May; 32(10):1123-1129. PubMed ID: 28446025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors.
    Hou XD; Ge GB; Weng ZM; Dai ZR; Leng YH; Ding LL; Jin LL; Yu Y; Cao YF; Hou J
    Bioorg Chem; 2018 Oct; 80():577-584. PubMed ID: 30032067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors.
    Chauhan D; George G; Sridhar SNC; Bhatia R; Paul AT; Monga V
    Arch Pharm (Weinheim); 2019 Oct; 352(10):e1900029. PubMed ID: 31407389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy.
    Xie L; Xie J; Xu Y; Chen W
    Food Funct; 2020 Oct; 11(10):8527-8536. PubMed ID: 33000849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of 1H-indene-(1,3,5,6)-tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach.
    Kalathiya U; Padariya M; Baginski M
    Biotechnol Appl Biochem; 2016 Nov; 63(6):765-778. PubMed ID: 26265531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, biological evaluation and molecular docking of alkoxyaurones as potent pancreatic lipase inhibitors.
    Thi Vo CV; Thanh Nguyen T; Ngoc Dang T; Quoc Dao M; Thao Vo V; Thi Tran O; Thanh Vu L; Tran TD
    Bioorg Med Chem Lett; 2024 Jan; 98():129574. PubMed ID: 38052378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biaryl carboxamide-based peptidomimetics analogs as potential pancreatic lipase inhibitors for treating obesity.
    Pandey V; Adhikrao PA; Motiram GM; Yadav N; Jagtap U; Kumar G; Paul A
    Arch Pharm (Weinheim); 2024 Apr; 357(4):e2300503. PubMed ID: 38251950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, molecular docking and biological evaluation of some benzimidazole derivatives as potent pancreatic lipase inhibitors.
    Menteşe E; Yılmaz F; Emirik M; Ülker S; Kahveci B
    Bioorg Chem; 2018 Feb; 76():478-486. PubMed ID: 29306066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, molecular modelling,
    S N C S; Sengupta P; Palawat S; P S D; George G; Paul AT
    J Biomol Struct Dyn; 2022; 40(19):9530-9542. PubMed ID: 34032197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors.
    Sridhar SN; Ginson G; Venkataramana Reddy PO; Tantak MP; Kumar D; Paul AT
    Bioorg Med Chem; 2017 Jan; 25(2):609-620. PubMed ID: 27908755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese medicine.
    Chen KY; Chang SS; Chen CY
    PLoS One; 2012; 7(9):e43932. PubMed ID: 22970152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput virtual screening with e-pharmacophore and molecular simulations study in the designing of pancreatic lipase inhibitors.
    Veeramachaneni GK; Raj KK; Chalasani LM; Bondili JS; Talluri VR
    Drug Des Devel Ther; 2015; 9():4397-412. PubMed ID: 26273199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-guided Design and Optimization of small Molecules as Pancreatic Lipase Inhibitors using Pharmacophore, 3D-QSAR, Molecular Docking, and Molecular Dynamics Simulation Studies.
    Modanwal S; Mulpuru V; Mishra N
    Curr Comput Aided Drug Des; 2023; 19(4):258-277. PubMed ID: 36597611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Novel Pancreatic Lipase Inhibitors Using
    Panwar U; Singh SK
    Endocr Metab Immune Disord Drug Targets; 2019; 19(4):449-457. PubMed ID: 30484411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiallergy Drugs as Potent Inhibitors of Lipase with Structure-activity Relationships and Molecular Docking.
    Khedidja B; Madjda B; Abderrahmane G
    Antiinflamm Antiallergy Agents Med Chem; 2018; 17(2):95-101. PubMed ID: 30198443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Evaluation of Inhibitors of Lipase from
    Ali S; Khan FI; Mohammad T; Lan D; Hassan MI; Wang Y
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, evaluation, and molecular modeling studies of indolyl oxoacetamides as potential pancreatic lipase inhibitors.
    Sridhar SNC; Palawat S; Paul AT
    Arch Pharm (Weinheim); 2020 Aug; 353(8):e2000048. PubMed ID: 32484265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.