These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33066112)

  • 1. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications.
    Tian Y; Yang S; Gao S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases.
    Stabel R; Stüven B; Hansen JN; Körschen HG; Wachten D; Möglich A
    J Mol Biol; 2019 Aug; 431(17):3029-3045. PubMed ID: 31301407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity.
    Brescia M; Zaccolo M
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27706091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection.
    Shu T; Zhou Y; Yan C
    Vascul Pharmacol; 2024 Mar; 154():107278. PubMed ID: 38262506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
    Reinecke D; Schwede F; Genieser HG; Seifert R
    PLoS One; 2013; 8(1):e54158. PubMed ID: 23342095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments.
    Keravis T; Lugnier C
    Br J Pharmacol; 2012 Mar; 165(5):1288-305. PubMed ID: 22014080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells.
    Zhang L; Bouadjel K; Manoury B; Vandecasteele G; Fischmeister R; Leblais V
    Br J Pharmacol; 2019 Jun; 176(11):1780-1792. PubMed ID: 30825186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic nucleotide phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system.
    Maurice DH
    Front Biosci; 2005 May; 10():1221-8. PubMed ID: 15769620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels.
    Henß T; Nagpal J; Gao S; Scheib U; Pieragnolo A; Hirschhäuser A; Schneider-Warme F; Hegemann P; Nagel G; Gottschalk A
    Br J Pharmacol; 2022 Jun; 179(11):2519-2537. PubMed ID: 33733470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters.
    Cheepala S; Hulot JS; Morgan JA; Sassi Y; Zhang W; Naren AP; Schuetz JD
    Annu Rev Pharmacol Toxicol; 2013; 53():231-53. PubMed ID: 23072381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.
    Klausen C; Kaiser F; Stüven B; Hansen JN; Wachten D
    Biochem Soc Trans; 2019 Dec; 47(6):1733-1747. PubMed ID: 31724693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme assays for cGMP hydrolyzing phosphodiesterases.
    Rybalkin SD; Hinds TR; Beavo JA
    Methods Mol Biol; 2013; 1020():51-62. PubMed ID: 23709025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and molecular genetics of the phosphodiesterases (PDEs).
    Azevedo MF; Faucz FR; Bimpaki E; Horvath A; Levy I; de Alexandre RB; Ahmad F; Manganiello V; Stratakis CA
    Endocr Rev; 2014 Apr; 35(2):195-233. PubMed ID: 24311737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac Cyclic Nucleotide Phosphodiesterases: Roles and Therapeutic Potential in Heart Failure.
    Preedy MEJ
    Cardiovasc Drugs Ther; 2020 Jun; 34(3):401-417. PubMed ID: 32172427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors.
    Rich TC; Tse TE; Rohan JG; Schaack J; Karpen JW
    J Gen Physiol; 2001 Jul; 118(1):63-78. PubMed ID: 11429444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling.
    Mehats C; Andersen CB; Filopanti M; Jin SL; Conti M
    Trends Endocrinol Metab; 2002; 13(1):29-35. PubMed ID: 11750860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Protein Interactions of Phosphodiesterases.
    Al-Nema MY; Gaurav A
    Curr Top Med Chem; 2019; 19(7):555-564. PubMed ID: 30931862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apicomplexan phosphodiesterases in cyclic nucleotide turnover: conservation, function, and therapeutic potential.
    Moss WJ; Brusini L; Kuehnel R; Brochet M; Brown KM
    mBio; 2024 Feb; 15(2):e0305623. PubMed ID: 38132724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.