BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33066143)

  • 41. Characterization of a chemical affinity probe targeting Akt kinases.
    Pachl F; Plattner P; Ruprecht B; Médard G; Sewald N; Kuster B
    J Proteome Res; 2013 Aug; 12(8):3792-800. PubMed ID: 23795919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate.
    George A; Aubol BE; Fattet L; Adams JA
    J Biol Chem; 2019 Jun; 294(24):9631-9641. PubMed ID: 31064840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aurora kinases: new targets for cancer therapy.
    Carvajal RD; Tse A; Schwartz GK
    Clin Cancer Res; 2006 Dec; 12(23):6869-75. PubMed ID: 17145803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.
    Cozza G; Sarno S; Ruzzene M; Girardi C; Orzeszko A; Kazimierczuk Z; Zagotto G; Bonaiuto E; Di Paolo ML; Pinna LA
    Biochim Biophys Acta; 2013 Jul; 1834(7):1402-9. PubMed ID: 23360763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases.
    Song M; Pang L; Zhang M; Qu Y; Laster KV; Dong Z
    Signal Transduct Target Ther; 2023 Apr; 8(1):148. PubMed ID: 37029108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Conserved Kinase-Based Body-Temperature Sensor Globally Controls Alternative Splicing and Gene Expression.
    Haltenhof T; Kotte A; De Bortoli F; Schiefer S; Meinke S; Emmerichs AK; Petermann KK; Timmermann B; Imhof P; Franz A; Loll B; Wahl MC; Preußner M; Heyd F
    Mol Cell; 2020 Apr; 78(1):57-69.e4. PubMed ID: 32059760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel Scaffolds for Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase (DYRK1A) Inhibitors.
    Czarna A; Wang J; Zelencova D; Liu Y; Deng X; Choi HG; Zhang T; Zhou W; Chang JW; Kildalsen H; Seternes OM; Gray NS; Engh RA; Rothweiler U
    J Med Chem; 2018 Sep; 61(17):7560-7572. PubMed ID: 30095246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ITK inhibition for the targeted treatment of CTCL.
    Bustos-Villalobos I; Bergstrom JW; Haigh NE; Luna JI; Mitra A; Marusina AI; Merleev AA; Wang EA; Sukhov A; Sultani H; Liu R; Bhardwaj G; Guo W; Kung HJ; Lam KS; Maverakis E
    J Dermatol Sci; 2017 Jul; 87(1):88-91. PubMed ID: 28434812
    [No Abstract]   [Full Text] [Related]  

  • 49. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability.
    Choi M; Min YH; Pyo J; Lee CW; Jang CY; Kim JE
    Br J Pharmacol; 2017 Jun; 174(12):1810-1825. PubMed ID: 28299790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective.
    Wang S; Zhang M; Liang D; Sun W; Zhang C; Jiang M; Liu J; Li J; Li C; Yang X; Zhou X
    Eur J Med Chem; 2019 Aug; 175():247-268. PubMed ID: 31121430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase.
    Hiruma Y; Koch A; Dharadhar S; Joosten RP; Perrakis A
    Proteins; 2016 Dec; 84(12):1761-1766. PubMed ID: 27699881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies.
    Thangaraj K; Ponnusamy L; Natarajan SR; Manoharan R
    Drug Discov Today; 2020 Dec; 25(12):2161-2173. PubMed ID: 33010478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.
    Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M
    Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.
    Zhao L; Yuan X; Wang J; Feng Y; Ji F; Li Z; Bian J
    Bioorg Med Chem; 2019 Mar; 27(5):677-685. PubMed ID: 30733087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the roles of the Cdc2-like kinases in cancers.
    Blackie AC; Foley DJ
    Bioorg Med Chem; 2022 Sep; 70():116914. PubMed ID: 35872347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.
    Colwill K; Pawson T; Andrews B; Prasad J; Manley JL; Bell JC; Duncan PI
    EMBO J; 1996 Jan; 15(2):265-75. PubMed ID: 8617202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles.
    Aranda S; Laguna A; de la Luna S
    FASEB J; 2011 Feb; 25(2):449-62. PubMed ID: 21048044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tyrosine kinases as targets in cancer therapy - successes and failures.
    Traxler P
    Expert Opin Ther Targets; 2003 Apr; 7(2):215-34. PubMed ID: 12667099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovery and development of aurora kinase inhibitors as anticancer agents.
    Pollard JR; Mortimore M
    J Med Chem; 2009 May; 52(9):2629-51. PubMed ID: 19320489
    [No Abstract]   [Full Text] [Related]  

  • 60. Synthesis and biological evaluation of new 5-benzylated 4-oxo-3,4-dihydro-5H-pyridazino[4,5-b]indoles as PI3Kα inhibitors.
    Bruel A; Logé C; Tauzia ML; Ravache M; Le Guevel R; Guillouzo C; Lohier JF; Oliveira Santos JS; Lozach O; Meijer L; Ruchaud S; Bénédetti H; Robert JM
    Eur J Med Chem; 2012 Nov; 57():225-33. PubMed ID: 23063566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.