These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33066170)
1. Role of PVDF in Rheology and Microstructure of NCM Cathode Slurries for Lithium-Ion Battery. Sung SH; Kim S; Park JH; Park JD; Ahn KH Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066170 [TBL] [Abstract][Full Text] [Related]
2. Preparation and Rate Capability of Carbon Coated LiNi Yang C; Zhang X; Huang M; Huang J; Fang Z ACS Appl Mater Interfaces; 2017 Apr; 9(14):12408-12415. PubMed ID: 28221016 [TBL] [Abstract][Full Text] [Related]
3. Recovery and Reuse of Composite Cathode Binder in Lithium Ion Batteries. Sarkar A; May R; Ramesh S; Chang W; Marbella LE ChemistryOpen; 2021 May; 10(5):545-552. PubMed ID: 33945235 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Excessive Sulfate in the Li-Ion Battery Leachate on the Properties of Resynthesized Li[Ni Lee J; Park S; Beak M; Park SR; Lee AR; Byun SH; Song J; Sohn JS; Kwon K Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772198 [TBL] [Abstract][Full Text] [Related]
5. Carrageenans as Sustainable Water-Processable Binders for High-Voltage NMC811 Cathodes. Rolandi AC; Pozo-Gonzalo C; de Meatza I; Casado N; Forsyth M; Mecerreyes D ACS Appl Energy Mater; 2023 Aug; 6(16):8616-8625. PubMed ID: 37654436 [TBL] [Abstract][Full Text] [Related]
6. Characterization of slurries for lithium-ion battery cathodes by measuring their flow and change in hydrostatic pressure over time and clarification of the relationship between slurry and cathode properties. Mori T; Ochi T; Kitamura K J Colloid Interface Sci; 2023 Jan; 629(Pt B):36-45. PubMed ID: 36150247 [TBL] [Abstract][Full Text] [Related]
7. Understanding the Solution Dynamics and Binding of a PVDF Binder with Silicon, Graphite, and NMC Materials and the Influence on Cycling Performance. Burdette-Trofimov MK; Armstrong BL; Korkosz RJ; Tyler JL; McAuliffe RD; Heroux L; Doucet M; Hoelzer DT; Kanbargi N; Naskar AK; Veith GM ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35575682 [TBL] [Abstract][Full Text] [Related]
8. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a Cross-Linked Polymer Containing Hydroxyl Groups as a Binder for High-Capacity Anodes in Li-Ion Batteries. Jang SY; Han SH J Nanosci Nanotechnol; 2019 Oct; 19(10):6617-6624. PubMed ID: 31027000 [TBL] [Abstract][Full Text] [Related]
10. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. Li J; Yao R; Cao C ACS Appl Mater Interfaces; 2014 Apr; 6(7):5075-82. PubMed ID: 24625317 [TBL] [Abstract][Full Text] [Related]
11. Dispersion Homogeneity of Silicon Anode Slurries with Various Binders for Li-Ion Battery Anode Coating. Kim B; Song Y; Youn B; Lee D Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904393 [TBL] [Abstract][Full Text] [Related]
12. The effect of solid content on the rheological properties and microstructures of a Li-ion battery cathode slurry. Ouyang L; Wu Z; Wang J; Qi X; Li Q; Wang J; Lu S RSC Adv; 2020 May; 10(33):19360-19370. PubMed ID: 35515438 [TBL] [Abstract][Full Text] [Related]
13. Extensional rheology of anode slurries for li-ion batteries containing natural and synthetic graphite. Jun Lee W; Park N; In Park J; Nam J; Hyun Ahn K; Min Kim J J Colloid Interface Sci; 2024 Jun; 663():508-517. PubMed ID: 38422976 [TBL] [Abstract][Full Text] [Related]
14. Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode. Leanza D; Vaz CAF; Melinte G; Mu X; Novák P; El Kazzi M ACS Appl Mater Interfaces; 2019 Feb; 11(6):6054-6065. PubMed ID: 30661351 [TBL] [Abstract][Full Text] [Related]
15. Surface Coating of NCM-811 Cathode Materials with g-C She S; Zhou Y; Hong Z; Huang Y; Wu Y ACS Omega; 2022 Jul; 7(28):24851-24857. PubMed ID: 35874193 [TBL] [Abstract][Full Text] [Related]
16. Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Barbosa JC; Dias JP; Lanceros-Méndez S; Costa CM Membranes (Basel); 2018 Jul; 8(3):. PubMed ID: 30029489 [TBL] [Abstract][Full Text] [Related]
17. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
18. Superdry poly(vinylidene fluoride-co-hexafluoropropylene) coating on a lithium anode as a protective layer and separator for a high-performance lithium-oxygen battery. Hsia TN; Lu HC; Hsueh YC; Rajesh Kumar S; Yen CS; Yang CC; Jessie Lue S J Colloid Interface Sci; 2022 Nov; 626():524-534. PubMed ID: 35809441 [TBL] [Abstract][Full Text] [Related]
19. Enhanced microstructure stability of LiNi Hu X; Du K; Zhang Y; Hou Y; Zhao H; Bai Y J Colloid Interface Sci; 2023 Jun; 640():1005-1014. PubMed ID: 36913834 [TBL] [Abstract][Full Text] [Related]
20. Facile Deposition of the LiFePO Tolganbek N; Zhalgas N; Kadyrov Y; Umirov N; Bakenov Z; Mentbayeva A ACS Omega; 2023 Feb; 8(8):8045-8051. PubMed ID: 36872969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]