BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33066395)

  • 1. Targeting DNA Repair, Cell Cycle, and Tumor Microenvironment in B Cell Lymphoma.
    Bröckelmann PJ; de Jong MRW; Jachimowicz RD
    Cells; 2020 Oct; 9(10):. PubMed ID: 33066395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity.
    Anand SK; Sharma A; Singh N; Kakkar P
    DNA Repair (Amst); 2020 Feb; 86():102748. PubMed ID: 31790874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of DNA double strand break repair.
    Kanaar R; Hoeijmakers JH; van Gent DC
    Trends Cell Biol; 1998 Dec; 8(12):483-9. PubMed ID: 9861670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation.
    Mladenov E; Magin S; Soni A; Iliakis G
    Semin Cancer Biol; 2016 Jun; 37-38():51-64. PubMed ID: 27016036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model.
    Delacôte F; Lopez BS
    Cell Cycle; 2008 Jan; 7(1):33-8. PubMed ID: 18196958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of DNA double-strand break repair pathway choice.
    Shrivastav M; De Haro LP; Nickoloff JA
    Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life or Death after a Break: What Determines the Choice?
    Krenning L; van den Berg J; Medema RH
    Mol Cell; 2019 Oct; 76(2):346-358. PubMed ID: 31561953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex.
    Matsuura S; Kobayashi J; Tauchi H; Komatsu K
    Adv Biophys; 2004; 38():65-80. PubMed ID: 15493328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle.
    Mohseni-Salehi FS; Zare-Mirakabad F; Sadeghi M; Ghafouri-Fard S
    Bull Math Biol; 2020 Jan; 82(1):11. PubMed ID: 31933029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair.
    Korsholm LM; Gál Z; Lin L; Quevedo O; Ahmad DA; Dulina E; Luo Y; Bartek J; Larsen DH
    Nucleic Acids Res; 2019 Sep; 47(15):8019-8035. PubMed ID: 31184714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response.
    Toulany M
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30621219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation.
    Xue L; Yu D; Furusawa Y; Okayasu R; Tong J; Cao J; Fan S
    Mutat Res; 2009 Nov; 670(1-2):15-23. PubMed ID: 19583974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.
    Pennisi R; Antoccia A; Leone S; Ascenzi P; di Masi A
    FEBS J; 2017 Aug; 284(15):2378-2395. PubMed ID: 28631426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors.
    Riabinska A; Daheim M; Herter-Sprie GS; Winkler J; Fritz C; Hallek M; Thomas RK; Kreuzer KA; Frenzel LP; Monfared P; Martins-Boucas J; Chen S; Reinhardt HC
    Sci Transl Med; 2013 Jun; 5(189):189ra78. PubMed ID: 23761041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage.
    Bensimon A; Schmidt A; Ziv Y; Elkon R; Wang SY; Chen DJ; Aebersold R; Shiloh Y
    Sci Signal; 2010 Dec; 3(151):rs3. PubMed ID: 21139141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects.
    Mitra J; Guerrero EN; Hegde PM; Liachko NF; Wang H; Vasquez V; Gao J; Pandey A; Taylor JP; Kraemer BC; Wu P; Boldogh I; Garruto RM; Mitra S; Rao KS; Hegde ML
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4696-4705. PubMed ID: 30770445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy.
    Nickoloff JA; Taylor L; Sharma N; Kato TA
    Cancer Drug Resist; 2021; 4(2):244-263. PubMed ID: 34337349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage response (DDR) via NKX3.1 expression in prostate cells.
    Erbaykent-Tepedelen B; Karamil S; Gonen-Korkmaz C; Korkmaz KS
    J Steroid Biochem Mol Biol; 2014 May; 141():26-36. PubMed ID: 24434284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage pathways and B-cell lymphomagenesis.
    Knittel G; Rehkämper T; Nieper P; Schmitt A; Flümann R; Reinhardt HC
    Curr Opin Hematol; 2018 Jul; 25(4):315-322. PubMed ID: 29702521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.