These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33066493)
1. Coupled Gas-Exchange Model for C Yun K; Timlin D; Kim SH Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066493 [TBL] [Abstract][Full Text] [Related]
2. [Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A case study for potato and oil sunflower.]. Huang MX; Wang J; Tang JZ; Yu Q; Zhang J; Xue QY; Chang Q; Tan MX Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3585-3592. PubMed ID: 29696856 [TBL] [Abstract][Full Text] [Related]
3. Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen. Liao Q; Ding R; Du T; Kang S; Tong L; Li S Sci Total Environ; 2023 Jun; 876():162584. PubMed ID: 36889407 [TBL] [Abstract][Full Text] [Related]
4. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Kim SH; Lieth JH Ann Bot; 2003 Jun; 91(7):771-81. PubMed ID: 12730065 [TBL] [Abstract][Full Text] [Related]
5. A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C Bellasio C; Quirk J; Buckley TN; Beerling DJ Plant Physiol; 2017 Sep; 175(1):104-119. PubMed ID: 28751312 [TBL] [Abstract][Full Text] [Related]
6. Plantecophys--An R Package for Analysing and Modelling Leaf Gas Exchange Data. Duursma RA PLoS One; 2015; 10(11):e0143346. PubMed ID: 26581080 [TBL] [Abstract][Full Text] [Related]
7. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Hölttä T; Lintunen A; Chan T; Mäkelä A; Nikinmaa E Tree Physiol; 2017 Jul; 37(7):851-868. PubMed ID: 28338800 [TBL] [Abstract][Full Text] [Related]
8. Leaf relative uptake of carbonyl sulfide to CO Sun W; Berry JA; Yakir D; Seibt U New Phytol; 2022 Sep; 235(5):1729-1742. PubMed ID: 35478172 [TBL] [Abstract][Full Text] [Related]
9. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum. Geber MA; Dawson TE Oecologia; 1997 Feb; 109(4):535-546. PubMed ID: 28307337 [TBL] [Abstract][Full Text] [Related]
10. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Xiong D; Douthe C; Flexas J Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546 [TBL] [Abstract][Full Text] [Related]
11. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period]. Schulze ED; Lange OL; Koch W Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070 [TBL] [Abstract][Full Text] [Related]
13. A Whole Leaf Comparative Study of Stomatal Conductance Models. Sakurai G; Miklavcic SJ Front Plant Sci; 2022; 13():766975. PubMed ID: 35481142 [TBL] [Abstract][Full Text] [Related]
14. Predicting light-induced stomatal movements based on the redox state of plastoquinone: theory and validation. Kromdijk J; Głowacka K; Long SP Photosynth Res; 2019 Jul; 141(1):83-97. PubMed ID: 30891661 [TBL] [Abstract][Full Text] [Related]
15. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
16. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Voelker SL; Brooks JR; Meinzer FC; Anderson R; Bader MK; Battipaglia G; Becklin KM; Beerling D; Bert D; Betancourt JL; Dawson TE; Domec JC; Guyette RP; Körner C; Leavitt SW; Linder S; Marshall JD; Mildner M; Ogée J; Panyushkina I; Plumpton HJ; Pregitzer KS; Saurer M; Smith AR; Siegwolf RT; Stambaugh MC; Talhelm AF; Tardif JC; Van de Water PK; Ward JK; Wingate L Glob Chang Biol; 2016 Feb; 22(2):889-902. PubMed ID: 26391334 [TBL] [Abstract][Full Text] [Related]
17. A functional-structural plant model that simulates whole- canopy gas exchange of grapevine plants (Vitis vinifera L.) under different training systems. Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E Ann Bot; 2020 Sep; 126(4):647-660. PubMed ID: 31837221 [TBL] [Abstract][Full Text] [Related]
18. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Lombardozzi D; Sparks JP; Bonan G; Levis S Oecologia; 2012 Jul; 169(3):651-9. PubMed ID: 22218943 [TBL] [Abstract][Full Text] [Related]
19. Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit. Yang J; Duursma RA; De Kauwe MG; Kumarathunge D; Jiang M; Mahmud K; Gimeno TE; Crous KY; Ellsworth DS; Peters J; Choat B; Eamus D; Medlyn BE Tree Physiol; 2019 Dec; 39(12):1961-1974. PubMed ID: 31631220 [TBL] [Abstract][Full Text] [Related]
20. Stomatal conductance of Acer rubrum ecotypes under varying soil and atmospheric water conditions: predicting stomatal responses with an abscisic acid-based model. Bauerle WL; Toler JE; Wang GG Tree Physiol; 2004 Jul; 24(7):805-11. PubMed ID: 15123452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]