These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33066517)

  • 21. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: a comparative study.
    Piccolo D; Ferrari A; Peris K; Diadone R; Ruggeri B; Chimenti S
    Br J Dermatol; 2002 Sep; 147(3):481-6. PubMed ID: 12207587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1,076 pigmented skin lesion biopsies.
    Del Rosario F; Farahi JM; Drendel J; Buntinx-Krieg T; Caravaglio J; Domozych R; Chapman S; Braunberger T; Dellavalle RP; Norris DA; Fathi R; Alkousakis T
    J Am Acad Dermatol; 2018 May; 78(5):927-934.e6. PubMed ID: 29678380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
    Garcia-Arroyo JL; Garcia-Zapirain B
    Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsupervised sub-segmentation for pigmented skin lesions.
    Liu Z; Sun J; Smith M; Smith L; Warr R
    Skin Res Technol; 2012 Feb; 18(1):77-87. PubMed ID: 21545650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated saliency-based lesion segmentation in dermoscopic images.
    Euijoon Ahn ; Lei Bi ; Youn Hyun Jung ; Jinman Kim ; Changyang Li ; Fulham M; Feng DD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3009-12. PubMed ID: 26736925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
    Yuan Y; Chao M; Lo YC
    IEEE Trans Med Imaging; 2017 Sep; 36(9):1876-1886. PubMed ID: 28436853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A basis function feature-based approach for skin lesion discrimination in dermatology dermoscopy images.
    Stanley RJ; Stoecker WV; Moss RH; Rabinovitz HS; Cognetta AB; Argenziano G; Soyer HP
    Skin Res Technol; 2008 Nov; 14(4):425-35. PubMed ID: 18937777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dermoscopic diagnosis of melanoma in a 4D space constructed by active contour extracted features.
    Mete M; Sirakov NM
    Comput Med Imaging Graph; 2012 Oct; 36(7):572-9. PubMed ID: 22819294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features.
    Yu Z; Jiang X; Zhou F; Qin J; Ni D; Chen S; Lei B; Wang T
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1006-1016. PubMed ID: 30130171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of deep learning architectures on melanoma detection.
    Hosseinzadeh Kassani S; Hosseinzadeh Kassani P
    Tissue Cell; 2019 Jun; 58():76-83. PubMed ID: 31133249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated Detection and Segmentation of Vascular Structures of Skin Lesions Seen in Dermoscopy, With an Application to Basal Cell Carcinoma Classification.
    Kharazmi P; AlJasser MI; Lui H; Wang ZJ; Lee TK
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1675-1684. PubMed ID: 27959832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma.
    Jafari MH; Nasr-Esfahani E; Karimi N; Soroushmehr SMR; Samavi S; Najarian K
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):1021-1030. PubMed ID: 28342106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hair detection and lesion segmentation in dermoscopic images using domain knowledge.
    Pathan S; Prabhu KG; Siddalingaswamy PC
    Med Biol Eng Comput; 2018 Nov; 56(11):2051-2065. PubMed ID: 29761315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme.
    Abbas Q; GarcĂ­a IF; Rashid M
    Br J Biomed Sci; 2010; 67(4):177-83. PubMed ID: 21294444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic detection of melanoma using broad extraction of features from digital images.
    Jafari MH; Samavi S; Karimi N; Soroushmehr SM; Ward K; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1357-1360. PubMed ID: 28268577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process.
    Binder M; Kittler H; Dreiseitl S; Ganster H; Wolff K; Pehamberger H
    Melanoma Res; 2000 Dec; 10(6):556-61. PubMed ID: 11198477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction.
    Saba T; Khan MA; Rehman A; Marie-Sainte SL
    J Med Syst; 2019 Jul; 43(9):289. PubMed ID: 31327058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.