These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33066517)
41. Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features. Kawahara J; Hamarneh G IEEE J Biomed Health Inform; 2019 Mar; 23(2):578-585. PubMed ID: 29994053 [TBL] [Abstract][Full Text] [Related]
42. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
43. Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images. Kaya S; Bayraktar M; Kockara S; Mete M; Halic T; Field HE; Wong HK BMC Bioinformatics; 2016 Oct; 17(Suppl 13):367. PubMed ID: 27766942 [TBL] [Abstract][Full Text] [Related]
44. A coarse-to-fine approach for segmenting melanocytic skin lesions in standard camera images. Cavalcanti PG; Scharcanski J Comput Methods Programs Biomed; 2013 Dec; 112(3):684-93. PubMed ID: 24075079 [TBL] [Abstract][Full Text] [Related]
45. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C; Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421 [TBL] [Abstract][Full Text] [Related]
46. Supervised Saliency Map Driven Segmentation of Lesions in Dermoscopic Images. Jahanifar M; Zamani Tajeddin N; Mohammadzadeh Asl B; Gooya A IEEE J Biomed Health Inform; 2019 Mar; 23(2):509-518. PubMed ID: 29994323 [TBL] [Abstract][Full Text] [Related]
47. Texture based skin lesion abruptness quantification to detect malignancy. Erol R; Bayraktar M; Kockara S; Kaya S; Halic T BMC Bioinformatics; 2017 Dec; 18(Suppl 14):484. PubMed ID: 29297290 [TBL] [Abstract][Full Text] [Related]
52. Differentiation of melanoma from benign mimics using the relative-color method. LeAnder R; Chindam P; Das M; Umbaugh SE Skin Res Technol; 2010 Aug; 16(3):297-304. PubMed ID: 20636998 [TBL] [Abstract][Full Text] [Related]
53. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images. Abbas Q; Emre Celebi M; Garcia IF; Ahmad W Skin Res Technol; 2013 Feb; 19(1):e93-102. PubMed ID: 22672769 [TBL] [Abstract][Full Text] [Related]
54. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876 [TBL] [Abstract][Full Text] [Related]
55. Representation learning for mammography mass lesion classification with convolutional neural networks. Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901 [TBL] [Abstract][Full Text] [Related]
56. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Wahba MA; Ashour AS; Guo Y; Napoleon SA; Elnaby MMA Comput Methods Programs Biomed; 2018 Oct; 165():163-174. PubMed ID: 30337071 [TBL] [Abstract][Full Text] [Related]
57. Estimation of the breast skin-line in mammograms using multidirectional Gabor filters. Casti P; Mencattini A; Salmeri M; Ancona A; Mangeri F; Pepe ML; Rangayyan RM Comput Biol Med; 2013 Nov; 43(11):1870-81. PubMed ID: 24209932 [TBL] [Abstract][Full Text] [Related]
58. Integrating color histogram analysis and convolutional neural networks for skin lesion classification. Rasel MA; Kareem SA; Obaidellah U Comput Biol Med; 2024 Dec; 183():109250. PubMed ID: 39395346 [TBL] [Abstract][Full Text] [Related]
59. Determination of border irregularity in dermoscopic color images of pigmented skin lesions. Jaworek-Korjakowska J; Tadeusiewicz R Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2665-8. PubMed ID: 26736840 [TBL] [Abstract][Full Text] [Related]
60. Pre-operative diagnosis of pigmented skin lesions: in vivo dermoscopy performs better than dermoscopy on photographic images. Carli P; De Giorgi V; Argenziano G; Palli D; Giannotti B J Eur Acad Dermatol Venereol; 2002 Jul; 16(4):339-46. PubMed ID: 12224689 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]