These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33066546)

  • 1. Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration.
    Rubes O; Machu Z; Sevecek O; Hadas Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Curve-Shaped Beam Bistable Piezoelectric Energy Harvester with Variable Potential Well: Modeling and Numerical Simulation.
    Chen X; Zhang X; Chen L; Guo Y; Zhu F
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers.
    Ansari MH; Karami MA
    J Intell Mater Syst Struct; 2018 Feb; 29(3):438-445. PubMed ID: 29674842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buckled MEMS Beams for Energy Harvesting from Low Frequency Vibrations.
    Xu R; Akay H; Kim SG
    Research (Wash D C); 2019; 2019():1087946. PubMed ID: 31549042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Dynamic Analysis of Bistable Piezoelectric Energy Harvester with a New-Type Dynamic Amplifier.
    Man D; Xu G; Xu H; Xu D; Tang L
    Comput Intell Neurosci; 2022; 2022():7155628. PubMed ID: 35789613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BaHf
    Brault D; Boy P; Levassort F; Poulin-Vittrant G; Bantignies C; Hoang T; Bavencoffe M
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications.
    Bouhedma S; Hu S; Schütz A; Lange F; Bechtold T; Ouali M; Hohlfeld D
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Analysis of a Magnetically Coupled Multi-Frequency Hybrid Energy Harvester.
    Xu Z; Yang H; Zhang H; Ci H; Zhou M; Wang W; Meng A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester.
    Atmeh M; Ibrahim A; Ramini A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.