BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 33066607)

  • 1. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions.
    Jann J; Gascon S; Roux S; Faucheux N
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms involved in normal and pathological osteoclastogenesis.
    Park-Min KH
    Cell Mol Life Sci; 2018 Jul; 75(14):2519-2528. PubMed ID: 29670999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment.
    Yang T; Grafe I; Bae Y; Chen S; Chen Y; Bertin TK; Jiang MM; Ambrose CG; Lee B
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7336-41. PubMed ID: 23589896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblast-osteoclast interactions.
    Chen X; Wang Z; Duan N; Zhu G; Schwarz EM; Xie C
    Connect Tissue Res; 2018 Mar; 59(2):99-107. PubMed ID: 28324674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone morphogenetic proteins 5 and 6 stimulate osteoclast generation.
    Wutzl A; Brozek W; Lernbass I; Rauner M; Hofbauer G; Schopper C; Watzinger F; Peterlik M; Pietschmann P
    J Biomed Mater Res A; 2006 Apr; 77(1):75-83. PubMed ID: 16355411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway.
    Liu S; Yan X; Guo J; An H; Li X; Yang L; Yu X; Li S
    J Cell Physiol; 2024 Mar; 239(3):e31062. PubMed ID: 37357387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development.
    Okamoto M; Murai J; Yoshikawa H; Tsumaki N
    J Bone Miner Res; 2006 Jul; 21(7):1022-33. PubMed ID: 16813523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular signaling in bone cells: Regulation of cell differentiation and survival.
    Plotkin LI; Bruzzaniti A
    Adv Protein Chem Struct Biol; 2019; 116():237-281. PubMed ID: 31036293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wenshen Zhuanggu formula mitigates breast cancer bone metastasis through the signaling crosstalk among the Jagged1/Notch, TGF-β and IL-6 signaling pathways.
    Wu C; Chen M; Sun Z; Ye Y; Han X; Qin Y; Liu S
    J Ethnopharmacol; 2019 Mar; 232():145-154. PubMed ID: 30576770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts.
    Kalbasi Anaraki P; Patecki M; Tkachuk S; Kiyan Y; Haller H; Dumler I
    J Bone Miner Res; 2015 Feb; 30(2):379-88. PubMed ID: 25196912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone morphogenetic protein signaling in bone homeostasis.
    Sánchez-Duffhues G; Hiepen C; Knaus P; Ten Dijke P
    Bone; 2015 Nov; 80():43-59. PubMed ID: 26051467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory mechanisms of osteoblast and osteoclast differentiation.
    Katagiri T; Takahashi N
    Oral Dis; 2002 May; 8(3):147-59. PubMed ID: 12108759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment.
    Lv WT; Du DH; Gao RJ; Yu CW; Jia Y; Jia ZF; Wang CJ
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis.
    Borton AJ; Frederick JP; Datto MB; Wang XF; Weinstein RS
    J Bone Miner Res; 2001 Oct; 16(10):1754-64. PubMed ID: 11585338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
    Simon D; Derer A; Andes FT; Lezuo P; Bozec A; Schett G; Herrmann M; Harre U
    Bone; 2017 Dec; 105():35-41. PubMed ID: 28822790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6.
    Yasui T; Kadono Y; Nakamura M; Oshima Y; Matsumoto T; Masuda H; Hirose J; Omata Y; Yasuda H; Imamura T; Nakamura K; Tanaka S
    J Bone Miner Res; 2011 Jul; 26(7):1447-56. PubMed ID: 21305609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β Negatively Regulates Mitf-E Expression and Canine Osteoclastogenesis.
    Asai K; Hisasue M; Shimokawa F; Funaba M; Murakami M
    Biochem Genet; 2018 Oct; 56(5):542-552. PubMed ID: 29680988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiency of stress-associated gene
    Shiraki M; Xu X; Iovanna JL; Kukita T; Hirata H; Kamohara A; Kubota Y; Miyamoto H; Mawatari M; Kukita A
    FASEB J; 2019 Aug; 33(8):8836-8852. PubMed ID: 31067083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review.
    Loh HY; Norman BP; Lai KS; Cheng WH; Nik Abd Rahman NMA; Mohamed Alitheen NB; Osman MA
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant human bone morphogenetic protein-2 enhances expression of interleukin-6 and transforming growth factor-beta 1 genes in normal human osteoblast-like cells.
    Zheng MH; Wood DJ; Wysocki S; Papadimitriou JM; Wang EA
    J Cell Physiol; 1994 Apr; 159(1):76-82. PubMed ID: 8138593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.