These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33066620)

  • 1. A Survey of Mycoviral Infection in
    Jacquat AG; Theumer MG; Cañizares MC; Debat HJ; Iglesias J; García Pedrajas MD; Dambolena JS
    Viruses; 2020 Oct; 12(10):. PubMed ID: 33066620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Incidence of the First Member of the Genus
    Torres-Trenas A; Pérez-Artés E
    Viruses; 2020 Mar; 12(3):. PubMed ID: 32138251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First Report of Fusarium Ear Rot of Maize Caused by Fusarium andiyazi in China.
    Zhang H; Luo W; Pan Y; Xu J; Xu JS; Chen WQ; Feng J
    Plant Dis; 2014 Oct; 98(10):1428. PubMed ID: 30703964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium species and moniliformin occurrence in sorghum grains used as ingredient for animal feed in Argentina.
    Pena GA; Cavaglieri LR; Chulze SN
    J Sci Food Agric; 2019 Jan; 99(1):47-54. PubMed ID: 29797405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four Novel Mycoviruses from the Hypovirulent
    Wang Q; Zou Q; Dai Z; Hong N; Wang G; Wang L
    Viruses; 2022 Jan; 14(1):. PubMed ID: 35062353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection.
    Lanubile A; Pasini L; Marocco A
    J Plant Physiol; 2010 Nov; 167(16):1398-406. PubMed ID: 20650545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Fusarium oxysporum.
    Wang J; Li C; Qiu R; Li X; Zhao J; Bai J; Chen Y; Li S
    Arch Virol; 2021 Nov; 166(11):3211-3216. PubMed ID: 34495411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro.
    Vismer HF; Shephard GS; van der Westhuizen L; Mngqawa P; Bushula-Njah V; Leslie JF
    Int J Food Microbiol; 2019 May; 296():31-36. PubMed ID: 30826540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum.
    Muñoz-Adalia EJ; Diez JJ; Fernández MM; Hantula J; Vainio EJ
    Arch Virol; 2018 Apr; 163(4):1009-1018. PubMed ID: 29353424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.
    Zhang Y; Choi YE; Zou X; Xu JR
    Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability.
    Covarelli L; Stifano S; Beccari G; Raggi L; Lattanzio VM; Albertini E
    Food Microbiol; 2012 Aug; 31(1):17-24. PubMed ID: 22475938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel mitovirus isolated from the phytopathogenic fungus Fusarium pseudograminearum.
    Ma G; Zhang B; Qi K; Zhang Y; Ma L; Jiang H; Qin S; Qi J
    Arch Virol; 2022 May; 167(5):1369-1373. PubMed ID: 35391577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and genetic variability of Fusarium verticillioides strains isolated from corn and sorghum in Brazil based on fumonisins production, microsatellites, mating type locus, and mating crosses.
    da Silva VN; Fernandes FM; Cortez A; Ribeiro DH; de Almeida AP; Hassegawa RH; Corrêa B
    Can J Microbiol; 2006 Aug; 52(8):798-804. PubMed ID: 16917539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot.
    Zhou Z; Cao Y; Li T; Wang X; Chen J; He H; Yao W; Wu J; Zhang H
    Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):241-255. PubMed ID: 32531477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virome Identification and Characterization of
    Yao Z; Zou C; Peng N; Zhu Y; Bao Y; Zhou Q; Wu Q; Chen B; Zhang M
    Front Microbiol; 2020; 11():240. PubMed ID: 32140150
    [No Abstract]   [Full Text] [Related]  

  • 16. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings.
    Glenn AE; Zitomer NC; Zimeri AM; Williams LD; Riley RT; Proctor RH
    Mol Plant Microbe Interact; 2008 Jan; 21(1):87-97. PubMed ID: 18052886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizobacteria and their potential to control Fusarium verticillioides: effect of maize bacterisation and inoculum density.
    Cavaglieri LR; Andrés L; Ibáñez M; Etcheverry MG
    Antonie Van Leeuwenhoek; 2005 Apr; 87(3):179-87. PubMed ID: 15803383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides.
    Guo L; Wenner N; Kuldau GA
    Fungal Biol; 2015 Dec; 119(12):1158-1169. PubMed ID: 26615739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings.
    Arias SL; Mary VS; Otaiza SN; Wunderlin DA; Rubinstein HR; Theumer MG
    Phytochemistry; 2016 May; 125():54-64. PubMed ID: 26903312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosyltransferase FvCpsA Regulates Fumonisin Biosynthesis and Virulence in
    Deng Q; Wu H; Gu Q; Tang G; Liu W
    Toxins (Basel); 2021 Oct; 13(10):. PubMed ID: 34679011
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.