These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 33066821)
1. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Ehsani S Biol Direct; 2020 Oct; 15(1):19. PubMed ID: 33066821 [TBL] [Abstract][Full Text] [Related]
2. Hepcidin-ferroportin axis in health and disease. Ginzburg YZ Vitam Horm; 2019; 110():17-45. PubMed ID: 30798811 [TBL] [Abstract][Full Text] [Related]
3. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Dakal TC Immunobiology; 2021 Jan; 226(1):152021. PubMed ID: 33232865 [TBL] [Abstract][Full Text] [Related]
5. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. Choudhury A; Mukherjee S J Med Virol; 2020 Oct; 92(10):2105-2113. PubMed ID: 32383269 [TBL] [Abstract][Full Text] [Related]
6. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Nemeth E; Ganz T Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204327 [TBL] [Abstract][Full Text] [Related]
7. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Qiao B; Sugianto P; Fung E; Del-Castillo-Rueda A; Moran-Jimenez MJ; Ganz T; Nemeth E Cell Metab; 2012 Jun; 15(6):918-24. PubMed ID: 22682227 [TBL] [Abstract][Full Text] [Related]
8. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Behloul N; Baha S; Shi R; Meng J Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235 [TBL] [Abstract][Full Text] [Related]
10. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles' heel conserved region to minimize probability of escape mutations and drug resistance. Robson B Comput Biol Med; 2020 Jun; 121():103749. PubMed ID: 32568687 [TBL] [Abstract][Full Text] [Related]
11. Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Zhang S; Qiao S; Yu J; Zeng J; Shan S; Tian L; Lan J; Zhang L; Wang X Nat Commun; 2021 Mar; 12(1):1607. PubMed ID: 33707453 [TBL] [Abstract][Full Text] [Related]
12. S-acylation of SARS-CoV-2 spike protein: Mechanistic dissection, in vitro reconstitution and role in viral infectivity. Puthenveetil R; Lun CM; Murphy RE; Healy LB; Vilmen G; Christenson ET; Freed EO; Banerjee A J Biol Chem; 2021 Oct; 297(4):101112. PubMed ID: 34428449 [TBL] [Abstract][Full Text] [Related]
13. Nicotinic Cholinergic System and COVID-19: In Silico Identification of an Interaction between SARS-CoV-2 and Nicotinic Receptors with Potential Therapeutic Targeting Implications. Farsalinos K; Eliopoulos E; Leonidas DD; Papadopoulos GE; Tzartos S; Poulas K Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32823591 [TBL] [Abstract][Full Text] [Related]
14. Applications of Protein Secondary Structure Algorithms in SARS-CoV-2 Research. Kruglikov A; Rakesh M; Wei Y; Xia X J Proteome Res; 2021 Mar; 20(3):1457-1463. PubMed ID: 33617253 [TBL] [Abstract][Full Text] [Related]
15. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Romeo A; Iacovelli F; Falconi M Virus Res; 2020 Sep; 286():198068. PubMed ID: 32565126 [TBL] [Abstract][Full Text] [Related]
16. Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity. Pal D J Struct Biol; 2021 Jun; 213(2):107713. PubMed ID: 33662570 [TBL] [Abstract][Full Text] [Related]
17. Expression and purification of a new recombinant camel hepcidin able to promote the degradation of the iron exporter ferroportin1. Boumaiza M; Jaouen M; Deschemin JC; Ezzine A; Ben Khalaf N; Vaulont S; Marzouki MN; Sari MA Protein Expr Purif; 2015 Nov; 115():11-8. PubMed ID: 26169129 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Jaimes JA; André NM; Chappie JS; Millet JK; Whittaker GR J Mol Biol; 2020 May; 432(10):3309-3325. PubMed ID: 32320687 [TBL] [Abstract][Full Text] [Related]
19. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Weisblum Y; Schmidt F; Zhang F; DaSilva J; Poston D; Lorenzi JC; Muecksch F; Rutkowska M; Hoffmann HH; Michailidis E; Gaebler C; Agudelo M; Cho A; Wang Z; Gazumyan A; Cipolla M; Luchsinger L; Hillyer CD; Caskey M; Robbiani DF; Rice CM; Nussenzweig MC; Hatziioannou T; Bieniasz PD Elife; 2020 Oct; 9():. PubMed ID: 33112236 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk. Chen P; Wang J; Xu X; Li Y; Zhu Y; Li X; Li M; Hao P Comput Biol Chem; 2022 Feb; 96():107613. PubMed ID: 34896769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]