These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 33067)
1. Oxidative phosphorylation and proton translocation in a lipoate-deficient mutant of Escherichia coli. de Chadarevjan S; de Santis A; Melandri BA; Melandri AB FEBS Lett; 1979 Jan; 97(2):293-5. PubMed ID: 33067 [No Abstract] [Full Text] [Related]
2. The proton-translocating pumps of oxidative phosphorylation. Fillingame RH Annu Rev Biochem; 1980; 49():1079-113. PubMed ID: 6157352 [No Abstract] [Full Text] [Related]
3. On the role of lipoic acid as a cofactor for oxidative phosphorylation in Escherichia coli. Haddock BA; Begg YA Biochem Biophys Res Commun; 1977 Dec; 79(4):1150-4. PubMed ID: 341888 [No Abstract] [Full Text] [Related]
4. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation. Prezioso G; Hong JS; Kerwar GK; Kaback HR Arch Biochem Biophys; 1973 Feb; 154(2):575-82. PubMed ID: 4266260 [No Abstract] [Full Text] [Related]
5. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. Mitchell P FEBS Lett; 1975 Feb; 50(2):95-7. PubMed ID: 234404 [No Abstract] [Full Text] [Related]
6. Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. Morris TW; Reed KE; Cronan JE J Bacteriol; 1995 Jan; 177(1):1-10. PubMed ID: 8002607 [TBL] [Abstract][Full Text] [Related]
7. Beta-galactoside transport and proton movements in an adenosine triphosphatase-deficient mutant of Escherichia coli. Rosen BP Biochem Biophys Res Commun; 1973 Aug; 53(4):1289-96. PubMed ID: 4270657 [No Abstract] [Full Text] [Related]
8. Lack of involvement of lipoic acid in membrane-associated energy transduction in Escherichia coli. Singh AP; Bragg PD Biochem Biophys Res Commun; 1978 Mar; 81(1):161-7. PubMed ID: 350226 [No Abstract] [Full Text] [Related]
9. The stoicheiometric relationships between electron transport, proton translocation and adenosine triphosphate synthesis and hydrolysis in mitochondria. Brand MD Biochem Soc Trans; 1977; 5(5):1615-20. PubMed ID: 21825 [No Abstract] [Full Text] [Related]
10. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178 [No Abstract] [Full Text] [Related]
11. Studies of energy-linked reactions. Net synthesis of adenosine triphosphate by isolated adenosine triphosphate synthase preparations: a role for lipoic acid and unsaturated fatty acids. Griffiths DE Biochem J; 1976 Dec; 160(3):809-12. PubMed ID: 138419 [TBL] [Abstract][Full Text] [Related]
12. The electrochemical proton gradient in Escherichia coli membrane vesicles and its relationship to active transport. Ramos S; Kaback HR Biochem Soc Trans; 1977; 5(1):23-5. PubMed ID: 19318 [No Abstract] [Full Text] [Related]
13. ATP synthesis driven by a pH gradient imposed across the cell membranes of lipoic acid and unsaturated fatty acid auxotrophs of Escherichia coli. Singh AP; Bragg PD FEBS Lett; 1979 Feb; 98(1):21-4. PubMed ID: 34529 [No Abstract] [Full Text] [Related]
14. Oxidative phosphorylation in Escherichia coli. Bragg PD; Hou C Can J Biochem; 1968 Jul; 46(7):631-41. PubMed ID: 4298972 [No Abstract] [Full Text] [Related]
15. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation. Gibson F; Cox GB Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255 [No Abstract] [Full Text] [Related]
16. Coupling between energy conservation and active transport of serine in Escherichia coli. van Thienen G; Postma PW Biochim Biophys Acta; 1973 Oct; 323(3):429-40. PubMed ID: 4271263 [No Abstract] [Full Text] [Related]
17. [Model of proton-potassium transport systems]. Martirosov SM; Panosian GA; Trchunian AA Biofizika; 1982; 27(2):249-52. PubMed ID: 6176277 [TBL] [Abstract][Full Text] [Related]
18. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. Kobayashi H; Kin E; Anraku Y J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322 [No Abstract] [Full Text] [Related]
19. Coupling between H+ entry and ATP formation in Escherichia coli. Maloney PC Biochem Biophys Res Commun; 1978 Aug; 83(4):1496-501. PubMed ID: 29634 [No Abstract] [Full Text] [Related]
20. Evidence for two protein-lipoylation activities in Escherichia coli. Brookfield DE; Green J; Ali ST; Machado RS; Guest JR FEBS Lett; 1991 Dec; 295(1-3):13-6. PubMed ID: 1765143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]