These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33067207)
1. Anti-Cancer Tumor Cell Necrosis of Epithelial Ovarian Cancer Cell Lines Depends on High Expression of HDM-2 Protein in Their Membranes. Thadi A; Gleeson EM; Khalili M; Shaikh MF; Goldstein E; Morano WF; Daniels LM; Grandhi N; Glatthorn H; Richard SD; Campbell PM; Sarafraz-Yazdi E; Pincus MR; Bowne WB Ann Clin Lab Sci; 2020 Sep; 50(5):611-624. PubMed ID: 33067207 [TBL] [Abstract][Full Text] [Related]
2. The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells. Davitt K; Babcock BD; Fenelus M; Poon CK; Sarkar A; Trivigno V; Zolkind PA; Matthew SM; Grin'kina N; Orynbayeva Z; Shaikh MF; Adler V; Michl J; Sarafraz-Yazdi E; Pincus MR; Bowne WB Ann Clin Lab Sci; 2014; 44(3):241-8. PubMed ID: 25117093 [TBL] [Abstract][Full Text] [Related]
3. Targeting Membrane HDM-2 by PNC-27 Induces Necrosis in Leukemia Cells But Not in Normal Hematopoietic Cells. Thadi A; Lewis L; Goldstein E; Aggarwal A; Khalili M; Steele L; Polyak B; Seydafkan S; Bluth MH; Ward KA; Styler M; Campbell PM; Pincus MR; Bowne WB Anticancer Res; 2020 Sep; 40(9):4857-4867. PubMed ID: 32878773 [TBL] [Abstract][Full Text] [Related]
4. Anti-Cancer Peptide PNC-27 Kills Cancer Cells by Unique Interactions with Plasma Membrane-Bound hdm-2 and with Mitochondrial Membranes Causing Mitochondrial Disruption. Krzesaj P; Adler V; Feinman RD; Miller A; Silberstein M; Yazdi E; Pincus MR Ann Clin Lab Sci; 2024 Mar; 54(2):137-148. PubMed ID: 38802154 [TBL] [Abstract][Full Text] [Related]
5. Anticancer peptide PNC-27 adopts an HDM-2-binding conformation and kills cancer cells by binding to HDM-2 in their membranes. Sarafraz-Yazdi E; Bowne WB; Adler V; Sookraj KA; Wu V; Shteyler V; Patel H; Oxbury W; Brandt-Rauf P; Zenilman ME; Michl J; Pincus MR Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1918-23. PubMed ID: 20080680 [TBL] [Abstract][Full Text] [Related]
6. The penetratin sequence in the anticancer PNC-28 peptide causes tumor cell necrosis rather than apoptosis of human pancreatic cancer cells. Bowne WB; Sookraj KA; Vishnevetsky M; Adler V; Sarafraz-Yazdi E; Lou S; Koenke J; Shteyler V; Ikram K; Harding M; Bluth MH; Ng M; Brandt-Rauf PW; Hannan R; Bradu S; Zenilman ME; Michl J; Pincus MR Ann Surg Oncol; 2008 Dec; 15(12):3588-600. PubMed ID: 18931881 [TBL] [Abstract][Full Text] [Related]
7. Molecular Targeting of H/MDM-2 Oncoprotein in Human Colon Cancer Cells and Stem-like Colonic Epithelial-derived Progenitor Cells. Thadi A; Morano WF; Khalili M; Babcock BD; Shaikh MF; Foster DS; Piazza Y; Gleeson EM; Goldstein E; Steele L; Campbell PM; Lin BO; Pincus MR; Bowne WB Anticancer Res; 2021 Jan; 41(1):27-42. PubMed ID: 33419797 [TBL] [Abstract][Full Text] [Related]
8. Ex vivo Efficacy of Anti-Cancer Drug PNC-27 in the Treatment of Patient-Derived Epithelial Ovarian Cancer. Sarafraz-Yazdi E; Gorelick C; Wagreich AR; Salame G; Angert M; Gartman CH; Gupta V; Bowne WB; Lee YC; Abulafia O; Pincus MR; Michl J Ann Clin Lab Sci; 2015; 45(6):650-8. PubMed ID: 26663795 [TBL] [Abstract][Full Text] [Related]
9. The anti-cancer peptide, PNC-27, induces tumor cell lysis as the intact peptide. Sookraj KA; Bowne WB; Adler V; Sarafraz-Yazdi E; Michl J; Pincus MR Cancer Chemother Pharmacol; 2010 Jul; 66(2):325-31. PubMed ID: 20182728 [TBL] [Abstract][Full Text] [Related]
10. Synergy between Paclitaxel and Anti-Cancer Peptide PNC-27 in the Treatment of Ovarian Cancer. Alagkiozidis I; Gorelick C; Shah T; Chen YA; Gupta V; Stefanov D; Amarnani A; Lee YC; Abulafia O; Sarafraz-Yazdi E; Michl J Ann Clin Lab Sci; 2017 May; 47(3):271-281. PubMed ID: 28667027 [TBL] [Abstract][Full Text] [Related]
11. PNC-27, a Chimeric p53-Penetratin Peptide Binds to HDM-2 in a p53 Peptide-like Structure, Induces Selective Membrane-Pore Formation and Leads to Cancer Cell Lysis. Sarafraz-Yazdi E; Mumin S; Cheung D; Fridman D; Lin B; Wong L; Rosal R; Rudolph R; Frenkel M; Thadi A; Morano WF; Bowne WB; Pincus MR; Michl J Biomedicines; 2022 Apr; 10(5):. PubMed ID: 35625682 [TBL] [Abstract][Full Text] [Related]
12. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation. Sørensen BH; Nielsen D; Thorsteinsdottir UA; Hoffmann EK; Lambert IH Am J Physiol Cell Physiol; 2016 Jun; 310(11):C857-73. PubMed ID: 26984736 [TBL] [Abstract][Full Text] [Related]
13. The USP7 Inhibitor P5091 Induces Cell Death in Ovarian Cancers with Different P53 Status. Wang M; Zhang Y; Wang T; Zhang J; Zhou Z; Sun Y; Wang S; Shi Y; Luan X; Zhang Y; Wang Y; Wang Y; Zou Z; Kang L; Liu H Cell Physiol Biochem; 2017; 43(5):1755-1766. PubMed ID: 29049989 [TBL] [Abstract][Full Text] [Related]
15. Antiproliferative and apoptotic effects of zinc-citrate compound (CIZAR(R)) on human epithelial ovarian cancer cell line, OVCAR-3. Bae SN; Lee YS; Kim MY; Kim JD; Park LO Gynecol Oncol; 2006 Oct; 103(1):127-36. PubMed ID: 16624386 [TBL] [Abstract][Full Text] [Related]
16. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Makii C; Oda K; Ikeda Y; Sone K; Hasegawa K; Uehara Y; Nishijima A; Asada K; Koso T; Fukuda T; Inaba K; Oki S; Machino H; Kojima M; Kashiyama T; Mori-Uchino M; Arimoto T; Wada-Hiraike O; Kawana K; Yano T; Fujiwara K; Aburatani H; Osuga Y; Fujii T Oncotarget; 2016 Nov; 7(46):75328-75338. PubMed ID: 27659536 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. Lu P; Vander Mause ER; Redd Bowman KE; Brown SM; Ahne L; Lim CS J Ovarian Res; 2019 May; 12(1):45. PubMed ID: 31092272 [TBL] [Abstract][Full Text] [Related]
18. [Effect of MTRR gene on apoptosis and autophagy pathways in multiresistant epithelial ovarian cancer]. Chen J; Wang Q; Zhang W; Li L Zhonghua Fu Chan Ke Za Zhi; 2016 Apr; 51(4):285-92. PubMed ID: 27116987 [TBL] [Abstract][Full Text] [Related]
19. In vitro model of normal, immortalized ovarian surface epithelial and ovarian cancer cells for chemoprevention of ovarian cancer. Brewer M; Wharton JT; Wang J; McWatters A; Auersperg N; Gershenson D; Bast R; Zou C Gynecol Oncol; 2005 Aug; 98(2):182-92. PubMed ID: 15907982 [TBL] [Abstract][Full Text] [Related]
20. Apoptosis as a measure of chemosensitivity to cisplatin and taxol therapy in ovarian cancer cell lines. Gibb RK; Taylor DD; Wan T; O'Connor DM; Doering DL; Gerçel-Taylor C Gynecol Oncol; 1997 Apr; 65(1):13-22. PubMed ID: 9103385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]