These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33067436)

  • 1. A role for spindles in the onset of rapid eye movement sleep.
    Bandarabadi M; Herrera CG; Gent TC; Bassetti C; Schindler K; Adamantidis AR
    Nat Commun; 2020 Oct; 11(1):5247. PubMed ID: 33067436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles.
    Gardner RJ; Hughes SW; Jones MW
    J Neurosci; 2013 Nov; 33(47):18469-80. PubMed ID: 24259570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.
    Latchoumane CV; Ngo HV; Born J; Shin HS
    Neuron; 2017 Jul; 95(2):424-435.e6. PubMed ID: 28689981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice.
    Thankachan S; Katsuki F; McKenna JT; Yang C; Shukla C; Deisseroth K; Uygun DS; Strecker RE; Brown RE; McNally JM; Basheer R
    Sci Rep; 2019 Mar; 9(1):3607. PubMed ID: 30837664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamocortical Dynamics during Rapid Eye Movement Sleep in the Mouse Somatosensory Pathway.
    Boscher F; Jumel K; Dvořáková T; Gentet LJ; Urbain N
    J Neurosci; 2024 Jun; 44(25):. PubMed ID: 38769008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat.
    Marks GA; Roffwarg HP
    Brain Res; 1993 Oct; 623(2):241-8. PubMed ID: 8221106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thalamic reticular control of local sleep in mouse sensory cortex.
    Fernandez LM; Vantomme G; Osorio-Forero A; Cardis R; Béard E; Lüthi A
    Elife; 2018 Dec; 7():. PubMed ID: 30583750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice.
    Liu H; Wang X; Chen L; Chen L; Tsirka SE; Ge S; Xiong Q
    Nat Commun; 2021 Jul; 12(1):4646. PubMed ID: 34330901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep.
    Ni KM; Hou XJ; Yang CH; Dong P; Li Y; Zhang Y; Jiang P; Berg DK; Duan S; Li XM
    Elife; 2016 Feb; 5():. PubMed ID: 26880556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia.
    Ferrarelli F; Tononi G
    Schizophr Res; 2017 Feb; 180():36-43. PubMed ID: 27269670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-"cortical" activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals.
    van der Meij J; Martinez-Gonzalez D; Beckers GJL; Rattenborg NC
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30462347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications for the thalamic reticular nucleus in impaired attention and sleep in schizophrenia.
    Young A; Wimmer RD
    Schizophr Res; 2017 Feb; 180():44-47. PubMed ID: 27510855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep.
    Iavarone E; Simko J; Shi Y; Bertschy M; García-Amado M; Litvak P; Kaufmann AK; O'Reilly C; Amsalem O; Abdellah M; Chevtchenko G; Coste B; Courcol JD; Ecker A; Favreau C; Fleury AC; Van Geit W; Gevaert M; Guerrero NR; Herttuainen J; Ivaska G; Kerrien S; King JG; Kumbhar P; Lurie P; Magkanaris I; Muddapu VR; Nair J; Pereira FL; Perin R; Petitjean F; Ranjan R; Reimann M; Soltuzu L; Sy MF; Tuncel MA; Ulbrich A; Wolf M; Clascá F; Markram H; Hill SL
    Cell Rep; 2023 Mar; 42(3):112200. PubMed ID: 36867532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice.
    Kim A; Latchoumane C; Lee S; Kim GB; Cheong E; Augustine GJ; Shin HS
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20673-8. PubMed ID: 23169668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of cortical and thalamic activity during non-REM sleep in humans.
    Mak-McCully RA; Rolland M; Sargsyan A; Gonzalez C; Magnin M; Chauvel P; Rey M; Bastuji H; Halgren E
    Nat Commun; 2017 May; 8():15499. PubMed ID: 28541306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single psychotomimetic dose of ketamine decreases thalamocortical spindles and delta oscillations in the sedated rat.
    Mahdavi A; Qin Y; Aubry AS; Cornec D; Kulikova S; Pinault D
    Schizophr Res; 2020 Aug; 222():362-374. PubMed ID: 32507548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness.
    Herrera CG; Cadavieco MC; Jego S; Ponomarenko A; Korotkova T; Adamantidis A
    Nat Neurosci; 2016 Feb; 19(2):290-8. PubMed ID: 26691833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamo-Cortical and Thalamo-Thalamic Coupling During Sleep and Wakefulness in Rats.
    Sysoev IV; van Luijtelaar G; Lüttjohann A
    Brain Connect; 2022 Sep; 12(7):650-659. PubMed ID: 34498943
    [No Abstract]   [Full Text] [Related]  

  • 19. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits.
    Yazdanbakhsh A; Barbas H; Zikopoulos B
    Netw Neurosci; 2023; 7(2):743-768. PubMed ID: 37397882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific inhibition of the thalamic reticular nucleus induces distinct modulations in sleep architecture.
    Visocky V; Morris BJ; Dunlop J; Brandon N; Sakata S; Pratt JA
    Eur J Neurosci; 2024 Feb; 59(4):554-569. PubMed ID: 36623837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.