BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33067555)

  • 1. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus.
    Zeng Y; Liu B
    Commun Biol; 2020 Oct; 3(1):587. PubMed ID: 33067555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical motion of the cell body enhances Caulobacter crescentus motility.
    Liu B; Gulino M; Morse M; Tang JX; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11252-6. PubMed ID: 25053810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.
    Li G; Tang JX
    Biophys J; 2006 Oct; 91(7):2726-34. PubMed ID: 16844761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation.
    Kanbe M; Shibata S; Umino Y; Jenal U; Aizawa SI
    Microbiology (Reading); 2005 Feb; 151(Pt 2):433-438. PubMed ID: 15699192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in
    Hershey DM; Fiebig A; Crosson S
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cellular differentiation in Caulobacter crescentus.
    Gober JW; Marques MV
    Microbiol Rev; 1995 Mar; 59(1):31-47. PubMed ID: 7708011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of
    Fiebig A
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31010900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Aerotactic Response of Caulobacter crescentus.
    Morse M; Colin R; Wilson LG; Tang JX
    Biophys J; 2016 May; 110(9):2076-84. PubMed ID: 27166815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types.
    Jenal U; White J; Shapiro L
    J Mol Biol; 1994 Oct; 243(2):227-44. PubMed ID: 7932752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The curved shape of Caulobacter crescentus enhances surface colonization in flow.
    Persat A; Stone HA; Gitai Z
    Nat Commun; 2014 May; 5():3824. PubMed ID: 24806788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered motility of Caulobacter Crescentus in viscous and viscoelastic media.
    Gao Y; Neubauer M; Yang A; Johnson N; Morse M; Li G; Tang JX
    BMC Microbiol; 2014 Dec; 14():322. PubMed ID: 25539737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.
    Nesper J; Hug I; Kato S; Hee CS; Habazettl JM; Manfredi P; Grzesiek S; Schirmer T; Emonet T; Jenal U
    Elife; 2017 Nov; 6():. PubMed ID: 29091032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm.
    Berne C; Kysela DT; Brun YV
    Mol Microbiol; 2010 Aug; 77(4):815-29. PubMed ID: 20598083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
    Boyd CH; Gober JW
    J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
    Badger JH; Hoover TR; Brun YV; Weiner RM; Laub MT; Alexandre G; Mrázek J; Ren Q; Paulsen IT; Nelson KE; Khouri HM; Radune D; Sosa J; Dodson RJ; Sullivan SA; Rosovitz MJ; Madupu R; Brinkac LM; Durkin AS; Daugherty SC; Kothari SP; Giglio MG; Zhou L; Haft DH; Selengut JD; Davidsen TM; Yang Q; Zafar N; Ward NL
    J Bacteriol; 2006 Oct; 188(19):6841-50. PubMed ID: 16980487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed Flagellar Ejection in Caulobacter crescentus Leaves PL-subcomplexes.
    Kaplan M; Wang Y; Chreifi G; Zhang L; Chang YW; Jensen GJ
    J Mol Biol; 2021 Jun; 433(13):167004. PubMed ID: 33891903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.