BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33067791)

  • 1. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa.
    Wang X; Zhu X; Chen X; Lv B; Wang X; Wang D
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45957-45964. PubMed ID: 33067791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.
    Tan X; Zhang D; Duan Z; Parajuli K; Hu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):344-352. PubMed ID: 31788731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of ultrasound on the physiological characteristics and competitive growth between
    Tan X; Xu YX; Li NG; Duan ZP; Jiang YJ; Zeng QF; Qiang J
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2845-2852. PubMed ID: 36384622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Phenolic Pollution on Interspecific Competition between
    Tan X; Dai K; Parajuli K; Hang X; Duan Z; Hu Y
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing effects of berberine on the growth and photosynthetic activities of Microcystis aeruginosa and Chlorella pyrenoidosa.
    Liu L; Zhang S; Dai W; Bi X; Zhang D
    Water Sci Technol; 2019 Sep; 80(6):1155-1162. PubMed ID: 31799959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa.
    Tao Y; Xue B; Yang Z; Yao S; Li S
    Chemosphere; 2015 Jan; 119():719-726. PubMed ID: 25180823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa.
    Zhang M; Wang X; Tao J; Li S; Hao S; Zhu X; Hong Y
    Ecotoxicol Environ Saf; 2018 Aug; 157():134-142. PubMed ID: 29621704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combined and second exposure effect of copper (II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa.
    Lu L; Wu Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2015 Jul; 40(1):140-8. PubMed ID: 26119232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa.
    Zhu X; Kong H; Gao Y; Wu M; Kong F
    J Hazard Mater; 2012 Oct; 237-238():371-5. PubMed ID: 22954602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid.
    Qian H; Xu J; Lu T; Zhang Q; Qu Q; Yang Z; Pan X
    Sci Total Environ; 2018 Jun; 625():1415-1422. PubMed ID: 29996438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Algal Responses and Adaptation Capability to Ultraviolet Radiation with Different Nutrient Regimes.
    Ren L; Huang J; Ding K; Wang Y; Yang Y; Zhang L; Wu H
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algicidal effects of four Chinese herb extracts on bloom-forming Microcystis aeruginosa and Chlorella pyrenoidosa.
    Ye L; Qian J; Jin S; Zuo S; Mei H; Ma S
    Environ Technol; 2014; 35(9-12):1150-6. PubMed ID: 24701910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.
    Schmidt KC; Jackrel SL; Smith DJ; Dick GJ; Denef VJ
    Harmful Algae; 2020 Nov; 99():101939. PubMed ID: 33218432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures.
    Wan X; Guo Q; Li X; Wang G; Zhao Y
    Toxicon; 2022 Apr; 210():49-57. PubMed ID: 35217023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of
    Zazouli MA; Ala A; Asghari S; Babanezhad E
    Int J Phytoremediation; 2024; 26(5):608-617. PubMed ID: 37705149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibitory effects of
    Qiu Y; Wang JN; Ma ZL; Chen YT; Zhang ZY; Wang M
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2853-2861. PubMed ID: 36384623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.
    Ren L; Wang P; Wang C; Chen J; Hou J; Qian J
    Environ Pollut; 2017 Jan; 220(Pt A):274-285. PubMed ID: 27665120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Joint inhibitory effects researches on Microcystis aeruginosa and Chlorella pyrenoidosa of phenolic acids].
    Zhang T; Han Y; He Z; Wang Haofen
    Wei Sheng Yan Jiu; 2016 May; 45(3):448-51, 457. PubMed ID: 27459810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.
    Anyanwu IN; Ikpikpini OC; Semple KT
    Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of soil long-term contaminated with PAHs by algal-bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase.
    Subashchandrabose SR; Venkateswarlu K; Venkidusamy K; Palanisami T; Naidu R; Megharaj M
    Sci Total Environ; 2019 Apr; 659():724-731. PubMed ID: 31096402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.