These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33068113)

  • 1. Interpreting k-mer-based signatures for antibiotic resistance prediction.
    Jaillard M; Palmieri M; van Belkum A; Mahé P
    Gigascience; 2020 Oct; 9(10):. PubMed ID: 33068113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.
    Jaillard M; Lima L; Tournoud M; Mahé P; van Belkum A; Lacroix V; Jacob L
    PLoS Genet; 2018 Nov; 14(11):e1007758. PubMed ID: 30419019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of genome-wide imipenem resistance features in
    Li S; Wu J; Ma N; Liu W; Shao M; Ying N; Zhu L
    J Med Microbiol; 2023 Feb; 72(2):. PubMed ID: 36753438
    [No Abstract]   [Full Text] [Related]  

  • 4. Squeakr: an exact and approximate k-mer counting system.
    Pandey P; Bender MA; Johnson R; Patro R; Berger B
    Bioinformatics; 2018 Feb; 34(4):568-575. PubMed ID: 29444235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CALDERA: finding all significant de Bruijn subgraphs for bacterial GWAS.
    Roux de Bézieux H; Lima L; Perraudeau F; Mary A; Dudoit S; Jacob L
    Bioinformatics; 2022 Jun; 38(Suppl 1):i36-i44. PubMed ID: 35758804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ntCard: a streaming algorithm for cardinality estimation in genomics data.
    Mohamadi H; Khan H; Birol I
    Bioinformatics; 2017 May; 33(9):1324-1330. PubMed ID: 28453674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection.
    Mahé P; Tournoud M
    BMC Bioinformatics; 2018 Oct; 19(1):383. PubMed ID: 30332990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. StLiter: A Novel Algorithm to Iteratively Build the Compacted de Bruijn Graph From Many Complete Genomes.
    Yu C; Mao K; Zhao Y; Chang C; Wang G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2471-2483. PubMed ID: 33630738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features.
    Zhu Q; Gao S; Xiao B; He Z; Hu S
    Microbiol Spectr; 2023 Jun; 11(3):e0464522. PubMed ID: 37191574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Performance Validation of Next-Generation Sequencing Based Clinical Microbiology Assays Using a K-mer Analysis Workflow.
    Lepuschitz S; Weinmaier T; Mrazek K; Beisken S; Weinberger J; Posch AE
    Front Microbiol; 2020; 11():1883. PubMed ID: 32849463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria.
    Aun E; Brauer A; Kisand V; Tenson T; Remm M
    PLoS Comput Biol; 2018 Oct; 14(10):e1006434. PubMed ID: 30346947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact representation of k-mer de Bruijn graphs for genome read assembly.
    Rødland EA
    BMC Bioinformatics; 2013 Oct; 14():313. PubMed ID: 24152242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of
    Rahman A; Medevedev P
    J Comput Biol; 2021 Apr; 28(4):381-394. PubMed ID: 33290137
    [No Abstract]   [Full Text] [Related]  

  • 18. Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data.
    Macesic N; Bear Don't Walk OJ; Pe'er I; Tatonetti NP; Peleg AY; Uhlemann AC
    mSystems; 2020 May; 5(3):. PubMed ID: 32457240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K-mer-Based Motif Analysis in Insect Species across
    Cserhati M; Xiao P; Guda C
    Comput Math Methods Med; 2019; 2019():4259479. PubMed ID: 31827584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCOSS: an ultra-fast k-mer counter for assembled genome analysis.
    Tang D; Li Y; Tan D; Fu J; Tang Y; Lin J; Zhao R; Du H; Zhao Z
    Bioinformatics; 2022 Jan; 38(4):933-940. PubMed ID: 34849595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.