BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33068172)

  • 1. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method.
    Tretiakow D; Tesch K; Meyer-Szary J; Markiet K; Skorek A
    Eur Arch Otorhinolaryngol; 2021 May; 278(5):1443-1453. PubMed ID: 33068172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between manual and semi-automatic segmentation of nasal cavity and paranasal sinuses from CT images.
    Tingelhoff K; Moral AI; Kunkel ME; Rilk M; Wagner I; Eichhorn KG; Wahl FM; Bootz F
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5505-8. PubMed ID: 18003258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the nasal cavity and paranasal sinuses from cone-beam CT images.
    Bui NL; Ong SH; Foong KW
    Int J Comput Assist Radiol Surg; 2015 Aug; 10(8):1269-77. PubMed ID: 25503593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics.
    Inthavong K; Shang Y; Wong E; Singh N
    Int Forum Allergy Rhinol; 2020 Jan; 10(1):29-40. PubMed ID: 31691535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.
    Keeler JA; Patki A; Woodard CR; Frank-Ito DO
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):153-66. PubMed ID: 26270330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matlab
    Keustermans W; Huysmans T; Schmelzer B; Sijbers J; Dirckx JJ
    Comput Biol Med; 2019 Feb; 105():27-38. PubMed ID: 30576918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of endoscopic sinus surgery on airflow of the nasal cavity and paranasal sinuses: a computational fluid dynamics study.].
    Xiong GX; Li JF; Jiang GL; Zhan JM; Rong LW; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Nov; 44(11):911-7. PubMed ID: 20079072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cone beam computed tomography for the nasal cavity and paranasal sinuses.
    Parks ET
    Dent Clin North Am; 2014 Jul; 58(3):627-51. PubMed ID: 24993926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Am J Rhinol Allergy; 2011; 25(6):388-92. PubMed ID: 22185741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On computational fluid dynamics models for sinonasal drug transport: Relevance of nozzle subtraction and nasal vestibular dilation.
    Basu S; Frank-Ito DO; Kimbell JS
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2946. PubMed ID: 29172251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses.
    Xiong GX; Zhan JM; Jiang HY; Li JF; Rong LW; Xu G
    Am J Rhinol; 2008; 22(5):477-82. PubMed ID: 18954506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
    Patel TR; Li C; Krebs J; Zhao K; Malhotra P
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():180-184. PubMed ID: 29728177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Simulation of Nasal Resistance Using Three-dimensional Models of the Nasal Cavity and Paranasal Sinus.
    Kaneda S; Goto F; Okami K; Mitsutani R; Takakura Y
    Tokai J Exp Clin Med; 2023 Jul; 48(2):56-61. PubMed ID: 37356970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery.
    Hildebrandt T; Brüning JJ; Lamecker H; Zachow S; Heppt WJ; Schmidt N; Goubergrits L
    Facial Plast Surg; 2019 Feb; 35(1):3-8. PubMed ID: 30759455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity.
    Xiong G; Zhan J; Zuo K; Li J; Rong L; Xu G
    Med Biol Eng Comput; 2008 Nov; 46(11):1161-7. PubMed ID: 18726628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of the ostiomeatal complex aeration using the CFD method.
    Tretiakow D; Tesch K; Markiet K; Przewoźny T; Kusiak A; Cichońska D; Skorek A
    Sci Rep; 2023 Mar; 13(1):3980. PubMed ID: 36894608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
    Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA
    Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.