These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33068297)

  • 41. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.
    Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM
    Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel isolation and biochemical characterization of immortalized fibroblasts for tissue engineering vocal fold lamina propria.
    Chen X; Thibeault SL
    Tissue Eng Part C Methods; 2009 Jun; 15(2):201-12. PubMed ID: 19108681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Ability of Conditioned Media From Stem Cells to Repair Vocal Fold Injuries.
    Kim CS; Choi H; Kim SW; Sun DI
    Laryngoscope; 2019 Aug; 129(8):1867-1875. PubMed ID: 30613969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of different RGD ligand densities in the development of cell-based drug delivery systems.
    Garate A; Santos E; Pedraz JL; Hernández RM; Orive G
    J Drug Target; 2015; 23(9):806-12. PubMed ID: 25816227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lamina propria replacement therapy with cultured autologous fibroblasts for vocal fold scars.
    Chhetri DK; Head C; Revazova E; Hart S; Bhuta S; Berke GS
    Otolaryngol Head Neck Surg; 2004 Dec; 131(6):864-70. PubMed ID: 15577782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Programmed cell delivery from biodegradable microcapsules for tissue repair.
    Draghi L; Brunelli D; Farè S; Tanzi MC
    J Biomater Sci Polym Ed; 2015; 26(15):1002-12. PubMed ID: 26230911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of viscous injectable pure alginate sol on cultured fibroblasts.
    Nagakura T; Hirata H; Tsujii M; Sugimoto T; Miyamoto K; Horiuchi T; Nagao M; Nakashima T; Uchida A
    Plast Reconstr Surg; 2005 Sep; 116(3):831-8. PubMed ID: 16141823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Liquid-type non-thermal atmospheric plasma ameliorates vocal fold scarring by modulating vocal fold fibroblast.
    Won HR; Song EH; Won JE; Lee HY; Kang SU; Shin YS; Kim CH
    Exp Biol Med (Maywood); 2019 Jul; 244(10):824-833. PubMed ID: 31088117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue engineering therapies for the vocal fold lamina propria.
    Kutty JK; Webb K
    Tissue Eng Part B Rev; 2009 Sep; 15(3):249-62. PubMed ID: 19338432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prolactin may serve as a regulator to promote vocal fold wound healing.
    Wang H; Li X; Lu J; Jones P; Xu W
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32667625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology.
    Branco da Cunha C; Klumpers DD; Li WA; Koshy ST; Weaver JC; Chaudhuri O; Granja PL; Mooney DJ
    Biomaterials; 2014 Oct; 35(32):8927-36. PubMed ID: 25047628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfated alginate microspheres associate with factor H and dampen the inflammatory cytokine response.
    Arlov Ø; Skjåk-Bræk G; Rokstad AM
    Acta Biomater; 2016 Sep; 42():180-188. PubMed ID: 27296843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantifying vocal fold wound-healing biomechanical property changes.
    Dion GR; Guda T; Mukudai S; Bing R; Lavoie JF; Branski RC
    Laryngoscope; 2020 Feb; 130(2):454-459. PubMed ID: 31059589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts.
    Marler JJ; Guha A; Rowley J; Koka R; Mooney D; Upton J; Vacanti JP
    Plast Reconstr Surg; 2000 May; 105(6):2049-58. PubMed ID: 10839402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering.
    Imaizumi M; Li-Jessen NY; Sato Y; Yang DT; Thibeault SL
    Ann Otol Rhinol Laryngol; 2017 Apr; 126(4):304-314. PubMed ID: 28290232
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical characterization of biocompatible microspheres and microcapsules by direct compression.
    Zhao L; Zhang Z
    Artif Cells Blood Substit Immobil Biotechnol; 2004 Feb; 32(1):25-40. PubMed ID: 15027799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Soy isoflavone-loaded alginate microspheres in thermosensitive gel base: attempts to improve wound-healing efficacy.
    Elmowafy M; Shalaby K; Salama A; Soliman GM; Alruwaili NK; Mostafa EM; Mohammed EF; Moustafa AEGA; Zafar A
    J Pharm Pharmacol; 2019 May; 71(5):774-787. PubMed ID: 30637741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age effects on extracellular matrix production of vocal fold scar fibroblasts in rats.
    Gugatschka M; Ainödhofer H; Gruber HJ; Graupp M; Kieslinger P; Kiesler K; Saxena A; Hirano S; Friedrich G
    Eur Arch Otorhinolaryngol; 2014 May; 271(5):1107-12. PubMed ID: 24077847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ.
    Trouche E; Girod Fullana S; Mias C; Ceccaldi C; Tortosa F; Seguelas MH; Calise D; Parini A; Cussac D; Sallerin B
    Cell Transplant; 2010; 19(12):1623-33. PubMed ID: 20719065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Therapeutic potential of gel-based injectables for vocal fold regeneration.
    Bartlett RS; Thibeault SL; Prestwich GD
    Biomed Mater; 2012 Apr; 7(2):024103. PubMed ID: 22456756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.