These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33068435)

  • 41. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain.
    Kim Y; Lee SJ; Yoon HJ; Kim NK; Lee BJ; Suh JY
    FEBS J; 2019 Dec; 286(23):4661-4674. PubMed ID: 31389128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potent CRISPR-Cas9 inhibitors from
    Watters KE; Shivram H; Fellmann C; Lew RJ; McMahon B; Doudna JA
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6531-6539. PubMed ID: 32156733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements.
    Pinilla-Redondo R; Shehreen S; Marino ND; Fagerlund RD; Brown CM; Sørensen SJ; Fineran PC; Bondy-Denomy J
    Nat Commun; 2020 Nov; 11(1):5652. PubMed ID: 33159058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure of an anti-CRISPR protein, AcrIIA1.
    Ka D; An SY; Suh JY; Bae E
    Nucleic Acids Res; 2018 Jan; 46(1):485-492. PubMed ID: 29182776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anti-CRISPR-Based and CRISPR-Based Genome Editing of
    Mayo-Muñoz D; He F; Jørgensen JB; Madsen PK; Bhoobalan-Chitty Y; Peng X
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30544778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs.
    Mai G; Ge R; Sun G; Meng Q; Zhou F
    Biomed Res Int; 2016; 2016():7237053. PubMed ID: 27195295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.
    Foster K; Kalter J; Woodside W; Terns RM; Terns MP
    RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer.
    Zhu DK; Yang XQ; He Y; Zhou WS; Song XH; Wang JB; Zhang Y; Liu MF; Wang MS; Jia RY; Chen S; Sun KF; Yang Q; Wu Y; Chen XY; Cheng AC
    BMC Genomics; 2016 Aug; 17(1):689. PubMed ID: 27577199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays.
    Störtz F; Minary P
    Nucleic Acids Res; 2021 Jan; 49(D1):D855-D861. PubMed ID: 33084893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Cas: biology, mechanisms and relevance.
    Hille F; Charpentier E
    Philos Trans R Soc Lond B Biol Sci; 2016 Nov; 371(1707):. PubMed ID: 27672148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogenomics of Cas4 family nucleases.
    Hudaiberdiev S; Shmakov S; Wolf YI; Terns MP; Makarova KS; Koonin EV
    BMC Evol Biol; 2017 Nov; 17(1):232. PubMed ID: 29179671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.
    Li L; Hu S; Chen X
    Biomaterials; 2018 Jul; 171():207-218. PubMed ID: 29704747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids.
    Pinilla-Redondo R; Mayo-Muñoz D; Russel J; Garrett RA; Randau L; Sørensen SJ; Shah SA
    Nucleic Acids Res; 2020 Feb; 48(4):2000-2012. PubMed ID: 31879772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. To acquire or resist: the complex biological effects of CRISPR-Cas systems.
    Bondy-Denomy J; Davidson AR
    Trends Microbiol; 2014 Apr; 22(4):218-25. PubMed ID: 24582529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ODB: a database of operons accumulating known operons across multiple genomes.
    Okuda S; Katayama T; Kawashima S; Goto S; Kanehisa M
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D358-62. PubMed ID: 16381886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
    Zhu LJ; Lawrence M; Gupta A; Pagès H; Kucukural A; Garber M; Wolfe SA
    BMC Genomics; 2017 May; 18(1):379. PubMed ID: 28506212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.